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Abstract. Graph Neural Networks (GNNs) are increasingly popular
in processing graph-structured data, yet they face significant challenges
when training and testing distributions diverge, common in real-world
scenarios. This divergence often leads to substantial performance drops
in GNN models. To address this, we introduce a novel approach that ef-
fectively enhances GNN performance in Out-of-Distribution (OOD) sce-
narios, called Causal Subgraphs and Information Bottlenecks (CSIB).
CSIB is guided by causal modeling principles to generate causal sub-
graphs while concurrently considering both Fully Informative Invariant
Features (FIIF) and Partially Informative Invariant Features (PIIF) sit-
uations. Our approach uniquely combines the principles of invariant risk
minimization and graph information bottleneck. This integration not
only guides the generation of causal subgraphs but also underscores the
necessity of balancing invariant principles with information compression
in the face of various distribution shifts. We validate our model through
extensive experiments across diverse shift types, demonstrating its effec-
tiveness in maintaining robust performance under OOD conditions.

Keywords: Graph Neural Network · Invariant Learning · Graph Out of
Distribution Generation

1 Introduction

Graph Neural Network (GNN) has become a promising solution for various
graph-based learning tasks [23,30,32,39], such as social recommendation [12,34,
35], drug discovery [15, 21, 22, 31], adversarial robustness [18, 19], and biomedi-
cal applications [5, 13, 38]. Despite their widespread success, traditional GNN
approaches often rely on the assumption that training and testing sets are
from the identical distribution, which may not hold true in real-world scenar-
ios, leading to performance degradation under distribution shifts. Most GNNs
presume the in-distribution (ID) assumption and may not perform well in out-
of-distribution (OOD) settings. For instance, in drug discovery, models trained
on limited data may face challenges when tested on a much larger and diverse
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set of molecules, underlining the necessity for GNNs with robust OOD gener-
alization abilities [15, 24]. In graph OOD scenarios, two predominant types of
distribution shifts are observed [10]: covariate shift and concept shift. Covariate
shift arises when the distribution of node or edge features changes, while the
underlying predictive relationships remain constant. In contrast, concept shift
occurs when these foundational relationships themselves alter, necessitating a
profound re-evaluation of the learned patterns by the GNNs. Although there is
a big success of the invariant learning on regular Euclidean data [2, 16, 29] to
address feature-level distribution shifts, due to the complex nature of graphs, it
is still a challenge for graph generalization. Since shifts on the graph can occur
at either the structure level or the feature level, considering how to transfer the
Euclidean invariant learning paradigm to graphs is worthwhile.

Another concern is existing methods in graph-based OOD generalization stem
from the inherent uncertainty in real-world data regarding the nature of invariant
features. In practical scenarios, it is often unclear if the invariant features within
a graph are Fully Informative Invariant Features (FIIF) or Partially Informa-
tive Invariant Features (PIIF). This ambiguity presents a significant challenge
to existing graph generalization methods. Traditional approaches like Empir-
ical Risk Minimization (ERM) [8] and invariant learning methodologies such
as Invariant Risk Minimization (IRM) [2], along with recent advancements like
Graph Information Bottleneck (GIB) [36,41], Domain Invariant Representation
(DIR) [37] and Graph Stochastic Attention (GSAT) [25], primarily cater to sce-
narios assuming invariant features are fully informative. However, these methods
often inadequately address situations where invariant features are only partially
informative, leading to considerable difficulties in accurately identifying causal
subgraph in this scenario. In such partially informative scenarios, the causal
subgraph does not encompass all the necessary information for accurate pre-
diction of labels across various environments, thereby necessitating a reliance
on additional non-causal features. This reliance can lead to instability in model
performance across different environments and potentially misguide the model
during the learning of invariant features, impacting its generalization ability. Re-
cent causality-based methods for graph-level tasks [4,6,40] show promise but still
primarily focus on scenarios with FIIF, neglecting the complexities introduced
by PIIF. Causality inspired invariant graph learning (CIGA) [4] recognizes the
significance of causality for graph-level tasks, yet it does not fully exploit envi-
ronmental information, which is crucial for identifying invariant subgraphs that
are robust across different environments [11].

To address existing limitations in OOD generalization for GNNs, we intro-
duce a novel framework titled Causal Subgraphs and Information Bottlenecks
(CSIB). Our proposed CSIB is grounded in the Invariant Principle via Invariant
Causal Prediction (ICP), predicated on the assumption that invariant features
are generated in accordance with a Structural Causal Model (SCM) [26]. We
leverage environmental features within the graph to extract invariant causal
subgraphs through the lens of mutual information. However, the mere imple-
mentation of the Invariant Principle is insufficient. For instance, when the diver-
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sity of environmental conditions is eclipsed by the number of spurious features,
traditional methods falter, unable to distinguish between causal and spurious
influences. Such a predicament often leads models to incorrectly incorporate
both types of features for prediction, a situation typified in the PIIF scenario.
Recognizing that most OOD methodologies for graphs neglect this nuance, we
integrate the concept of a Graph Information Bottleneck (GIB) within our CSIB
framework. This serves as a selective filter applied to our generated subgraphs,
ensuring that only the most relevant causal features are preserved for prediction
tasks. Theoretical analysis paired with empirical evidence demonstrates that
CSIB exhibits superior performance in generating graph OOD representations,
adeptly handling a spectrum of shift variations. This attests to the robustness
and practicality of our approach in enhancing the OOD generalization capabili-
ties of GNNs. Our main contributions are as follows:

– Our proposed CSIB integrates both Invariant Principle and GIB. The incor-
poration of information compression in CSIB aids in eliminating potential
spurious features, thereby enhancing the generalization across varying shifts.
This dual approach empowers our model to discern and leverage invariant
features under both fully and partially informative causal structure shifts.

– We propose an end-to-end framework that integrates environmental features
into causal graph generation. By minimizing the discrepancy between the
predictions of causal and environmental causal graphs, our approach effec-
tively identifies features invariant to environmental changes.

– Empirically, we conduct extensive experiments on five datasets including
both synthetic and real-world scenarios. The results demonstrate significant
improvements in handling structural and feature-level shifts in the graph
and highlight the model’s robustness and versatility.

2 Graph OOD Causal Generation
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(a) FIIF (b) PIIF

Fig. 1: Demonstrations of structural causal models (SCMs) for FIIF and PIIF. Gs in
FIIF is directly controlled by Gc. Gs in PIIF is indirectly controlled by G through Y .

In this study, we address the significant challenge of improving the generaliza-
tion capability of GNNs in OOD scenarios. Commonly, GNN models presuppose
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that the distributions of training and testing data are identical. However, this
assumption often does not hold in practical applications, leading to a marked
decrease in model performance when faced with data that substantially diverges
from the training distribution.

2.1 Problem and Objective in Graph OOD Generation

Our primary research goal is to address OOD generalization challenges in graph
data by learning an invariant subgraph Gc that remains consistent across varied
environmental conditions and distributional shifts. We consider a collection of
graph datasets D = {De}e∈Eall , where each dataset De represents a unique en-
vironment e within the full set of environments Eall. Each dataset De consists
of graph samples (G, Y ), where G is a graph from environment e and Y is the
corresponding label. The central aim is to optimize a GNN model ϕ that is ca-
pable of identifying and leveraging an invariant subgraph structure Gc within
these graphs. This invariant subgraph Gc should include the essential features
of the graphs that are consistent and predictive of the labels Y across all envi-
ronments, irrespective of the environmental changes or distributional shifts. The
challenge lies in ensuring that Gc is robust to environmental variations, thereby
enabling the GNN ϕ to generalize well to unseen environments, and maintain its
predictive precision.

2.2 Causal Graph Generation under Structural Causal Models

To mitigate the challenge of OOD generation in graphs, we introduce to generate
causal graphs with Structural Causal Models (SCMs) as shown in Figure 1. Our
primary goal is to identify variables that hold a stable causal relationship with
the target variable Y across varying environmental conditions. We extend the
invariance principle to our model.

Let G be a graph with a corresponding target variable Y . There exists an
invariant causal subgraph Gc ⊆ G encapsulating the causal mechanism Gc → Y .
This causal mechanism is independent of any external environmental factors
E, ensuring the conditional distribution P (Y |Gc) is invariant across different
environments. Formally:

∀e ∈ Eall, P (Y |Gc, E = e) = P (Y |Gc), (1)

where Eall represents the set of all possible environments. This indicates that Gc

contains all necessary information for consistent prediction of Y , irrespective of
environmental variations or shifts.

Building on this assumption, our framework introduces a causal graph gener-
ator aimed at uncovering the invariant features within graph data. We leverage
environmental features as a form of auxiliary information, integrating them into
the graph generation process to further emphasize the invariant characteristics
of Gc. To further construct an invariant subgraph Gc that consistently repre-
sents the underlying causal mechanisms across different environmental settings,
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we define Fully Informative Invariant Features (FIIF) and Partially Informative
Invariant Features (PIIF) in Equations 2 and 3, respectively. Identifying vari-
ables with a stable causal relationship to the target variable Y under both FIIF
and PIIF is essential. The Independent Causal Mechanisms assumption [3, 27]
suggests that the process of labeling, represented as Gc → Y , is not influenced
by other external factors. This means that the conditional distribution P (Y |Gc)
should remain consistent, regardless of any interventions on the environmental
latent variable E. However, extracting the invariant causal subgraph Gc from
the overall graph G is challenging, especially when specific information about
the environmental variable E is missing. This absence complicates the task of
ensuring that the representations learned are independent of E.

– Fully Informative Invariant Features (FIIF): These are features within
a graph that provide complete and consistent information about the target
variable Y across all environments. Formally, a feature set is considered as
FIIF if it satisfies:

Y ⊥⊥ E |Gc, (2)

where Gc represents the invariant subgraph that captures all the necessary
information to predict Y reliably, irrespective of the environmental variable
E. FIIF ensures that the relationship between Gc and Y is stable and unaf-
fected by changes in E.

– Partially Informative Invariant Features (PIIF): These features in
a graph provide partial information about the target variable Y and may
require additional contextual information for accurate prediction. PIIF is
defined by the condition:

Y ⊥̸⊥ E |Gc, Gs, (3)

where Gs denotes the spurious graph. In this case, Gc still contains relevant
information about Y , but its predictive power is not complete and can be
influenced by environmental changes represented by E. PIIF indicates that
while Gc is informative, it may not be sufficient on its own to account for
the variability in Y across different environments.

Traditional approaches such as IRM [2], and recent developments like GIB [36,
41], DIR [37], and GSAT [25] primarily focus on scenarios characterized with
FIIF. These methods are under the assumption that invariant features compre-
hensively inform the target variable across different environments. However, they
may falter in PIIF contexts where invariant features only partially convey es-
sential information for accurate predictions. Although CIGA [4] takes PIIF into
account, it does not leverage environmental features, limiting its effectiveness in
OOD generalization. This highlights the importance of discerning between FIIF
and PIIF, a critical aspect for advancing OOD generalization in graph-based
data. Specifically, in the SCMs as shown in Figure 1 for FIIF, the spurious
graph Gs is directly influenced by the causal graph Gc. In contrast, in PIIF
scenarios, Gs is affected by Gc indirectly through label Y . In PIIF scenarios,
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the causal subgraph Gc does not fully capture all necessary information for ac-
curate prediction of Y across environments. Some subgraphs of Gs may hold
additional information about Y beyond what Gc offers, leading to a potential
incorporation of parts of Gs into Gc. This partial informativeness necessitates
reliance on additional non-causal features, potentially leading to instability in
model performance across various shifts. It can misguide the model during the
learning of Gc, leading it to over-rely on these unstable, non-causal features,
thereby affecting its generalization capability.

3 Graph Invariant Causal Generation

Our CSIB introduces a novel methodology for Graph OOD generation. We imple-
ment the invariance principle, and generate the invariant causal graph, forming
the backbone of our OOD generalization strategy. To further refine this process
and overcome the limitations inherent in previous approaches, we also incorpo-
rate the concept of information bottleneck. The details of these implementations
are described in this section.

3.1 Invariant Causal Graph Extraction

The first phase involves the identification of the invariant causal graph Gc within
the given graph G, utilizing a specially designed GNN, denoted as gϕ. This pro-
cess is designed to discern the subgraph structure Gc that inherently contains
features invariant across diverse environments. During training, edge selection is
guided by stochastic sampling from Bernoulli distributions, enabling the genera-
tion of subgraphs that most contribute to the label prediction. This mechanism
highlights the subgraphs relevant to stable predictions, thereby capturing the
essential invariant structures within the graph.

From an information-theoretic interpretation [14], IRM [2] can be understood
as the process of identifying features within data that maintain a consistent pre-
dictive relationship with the output variable, irrespective of the environment.
This interpretation aligns with our objective of extracting an invariant causal
graph Gc from the input graph G. By maximizing the mutual information be-
tween Y and Gc, and concurrently minimizing the conditional mutual informa-
tion between Y and environmental variables given Gc, our model adheres to the
invariant principle. This approach ensures the extraction of features from G that
are not only informative about Y but also stable across different environments.
Thus, we aim to maximize the mutual information between the graph’s label Y
and the invariant causal graph Gc, while also considering the conditional mutual
information between Y and environmental factors E given Gc. The objective is
formalized as follows:

max
ϕ,θ

I(Y ;Gc)− βI(Y ;E |Gc). (4)

This formulation aims to ensure that the model captures the crucial information
from Gc for predicting Y and takes into account environmental influences that
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Fig. 2: The CSIB framework comprises three key components: a causal graph predictor
fϕ, a conditional environmental predictor fθ, and our GNN gϕ. Specifically, the causal
graph can be generated using a Causal Graph Generator. Environmental graph features
are concatenated with the output of gϕ and then fed into the Environmental Graph
Generator to sample environmental conditioned graphs. This process aligns with our
optimization objective maxϕ,θ I(Y ;Gc)−βI(Y ;E|Gc)−λI(G;Gc), where the three loss
terms correspond to the respective components of our model.

might affect this prediction. For I(Y ;E | Gc), we have :

I(Y ;E |Gc) = H(Y |Gc)−H(Y |E,Gc), (5)

where we dissect the I(Y ;E |Gc) into H(Y |Gc) and H(Y |E,Gc). We utilize an
i.i.d. sample set (yi, Gci)

N
i=1 from the joint distribution p(y,Gc), approximating

these terms using the empirical distribution. This decomposition H(Y |Gc) and
H(Y |E,Gc) are represented as:

H(Y |Gc) =
1

N

N∑
i=1

log q(yi |Gci), (6)

H(Y |E,Gc) =
1

N

N∑
i=1

log q(yi |Gci , ei), (7)

where q(y |Gc) and q(y |Gc, e) function as variational approximations of the ac-
tual conditional probabilities p(y |Gc) and p(y |Gc, E), respectively. This step is
crucial for operationalizing the mutual information in a computationally feasible
manner, ensuring the practicality of our approach.

3.2 Causal Graph Generator and Environmental Graph Generator
on GNNs

In our approach, the causal subgraph Gc from the input graph G is facilitated
through a GNN gϕ. It processes the graph G to generate node representations
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{hv | v ∈ V }, where V represents the set of nodes in the graph. Following the
Gilbert random graph theory [9], we model each edge in G with a binary random
variable rij , indicating the presence rij = 1 or absence of an edge between nodes
vi and vj . The probability puv for each edge is computed using a Multi-layer
Perception (MLP) layer that applies a sigmoid function to the concatenated
node representations (hu, hv) to a probability score puv ∈ [0, 1].

To facilitate gradient-based optimization and enable stochasticity in edge
selection, we employ a categorical reparameterization for rij :

rij = Sigmoid
(
log ε− log(1− ε) +

αij

τ

)
, (8)

where ε ∼ Uniform(0, 1), αij is the logit of the edge existence probability, and τ
is a temperature parameter controlling the approximation accuracy. The causal
subgraph Gc is extracted based on the edge probabilities puv, with its adjacency
matrix Ac derived from the original matrix A and the edge scores. This process
effectively identifies the relevant connections and nodes that contribute to the
prediction task. Finally, the prediction model fϕ utilizes the extracted subgraph
Gc to make predictions about the label Y .

It is known that OOD generation is impracticable without environmental in-
formation [1,11,26]. In the absence of environmental information, distinguishing
between the causal subgraph Gc and the spurious subgraph Gs becomes chal-
lenging, leading to potential confusion in their identification. In our framework,
the causal graph generation on GNNs extends beyond structural features of G
by incorporating environmental factors. We augment the graph features with
extracted environmental features enhancing the model’s capacity to account
for external influences. This concatenation enriches our graph representation,
aligning it with the specific context of each environment. The enriched graph
representation, now comprising both graph and environmental features, is used
to sample environmentally conditioned subgraphs. These subgraphs, embodying
comprehensive environmental and structural data, are then fed into our predic-
tion model fθ, which is adept at leveraging these enriched subgraphs for making
predictions about Y . The introduction of environmental features into Equation 4
is pivotal to our invariant learning strategy. It allows us to minimize the influence
of environmental variables on the causal graph, thereby learning a representation
of Gc that is invariant across different environments.

3.3 Introduce Graph Information Bottleneck into Graph OOD
Generation Failures

Incorporating the Graph Information Bottleneck (GIB) principle into the Graph
OOD generation process addresses inherent limitations, particularly under PIIF
scenarios. As illustrated in Figure 1, certain subgraphs within the spurious graph
Gs may inadvertently influence the target variable Y , complicating the OOD
generalization task. In the context of PIIF, the target label Y is affected not
only by the invariant causal subgraph Gc but also by a subset of the spurious
graph. While the optimization of Equation 4 aids in isolating the invariant causal
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subgraph Gc, it may neglect the influence of the spurious graph, which also con-
tributes to predicting Y . This oversight can lead to a model that, despite being
trained to focus on invariant features, still inadvertently captures non-causal or
spurious features that can degrade its performance in unseen environments.

To relieve the failure model, we propose to select subgraphs with the least ca-
pacity, i.e., those that minimize the mutual information I(G,Gc). This selection
criterion leads us to an objective formulation that integrates both the Invariant
principle and the GIB principle [41]:

max
ϕ,θ

I(Y ;Gc)− βI(Y ;E|Gc)− λI(G;Gc), (9)

To effectively operationalize this objective, we introduce a variational distri-
bution q(GS) to approximate the mutual information term I(G;Gc), leading to
an upper bound that can be tractably optimized. This is expressed as:

I(G;Gc) ≤ Ep(G) [KL (pα(GS |G) || q(GS))] (10)

= Ep(G)

 N∑
i,j=1

KL (pα(eij |G) || q(eij))

 (11)

= Ep(G)

 N∑
i,j=1

log
pα(eij |G)

q(eij)

 , (12)

where pα(GS |G) represents the causal graph generator, and q(GS) is typically
set as q(GS) = C ·

∏N
i,j=1 pπ(eij), eij ∼ Bern(π), with C being a constant deter-

mined by the hyper-parameter π.
The regularization parameters β and λ play a crucial role in balancing the

trade-offs between maintaining adherence to the invariance principle and im-
posing the information bottleneck constraint. By carefully adjusting these pa-
rameters, our model aims to capture the invariant structure within G that is
predictive of Y while minimizing the influence of environmental factors and ex-
traneous information, thereby enhancing the model’s generalization capability
across diverse and unseen environments.

3.4 Overall Optimization Objective

The overarching goal of our CSIB is to optimize the graph neural network model
to ensure robust OOD generalization. We achieve this by focusing on the iden-
tification of an invariant causal subgraph Gc and mitigating the influence of
spurious features under both FIIF and PIIF. Our optimization objective com-
bines both the principles of invariant and GIB constraint, leading to a tractable
and effective learning framework for graph data.

Our optimization objective can be formulated as:

min
gϕ,fϕ

max
fθ

Lc(Y, fϕ(G)) + βL(G, gϕ(G))

+ λ(Lc(Y, fϕ(G))− Ld(Y, fθ(G,E))), (13)
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where causal loss is Lc(Y, fϕ(G)) = 1
N

∑N
i=1 log q(yi |Gci). By minimizing the

causal loss, we ensure that the model focuses on those subgraph features that
have a consistent and causal impact on Y . Environmental loss Ld(Y, fθ(G,E)) =
1
N

∑N
i=1 log q(yi |Gci , ei) accounts for the potential influence of environmental

variables E on the prediction. By incorporating environmental loss, we ensure
that the model can leverage environmental context when beneficial while main-
taining its focus on invariant causal relationships. The information constraint
L(G, gϕ(G)) = Ep(G) [KL (pα(GS |G) || q(GS))] aims to retain only the most cru-
cial information within Gc necessary for predicting Y , and it is achieved by
minimizing the mutual information between the input graph G and the causal
subgraph Gc.

4 Experiments

In our experimental evaluation, we validate the effectiveness of our CSIB in graph
OOD generalization. The experiments are structured to answer three questions:
1) How does CSIB perform compared to general OOD generation methods?
2) How does it stand against recent graph-specific OOD generation methods?
3) What is the impact of incorporating invariance principles and GIB?

4.1 Datasets

We evaluated our model on five datasets from the GOOD benchmark [10]:
CMNIST-color, Motif-size, Motif-base, HIV-scaffold, and HIV-size. GOOD-HIV
is a real-world molecular dataset characterized by scaffold and size domain shifts.
The scaffold domain (HIV-scaffold) is based on the Bemis-Murcko scaffold, which
represents the two-dimensional structural core of a molecule, while the size do-
main (HIV-size) is determined by the number of nodes in a molecular graph.
GOOD-Motif, a synthetic dataset, is crafted for structural shifts, with graphs
generated by combining a base graph and a motif, where the motif solely deter-
mines the label. The shift domains include the base graph type (Motif-base) and
graph size (Motif-size). GOOD-CMNIST, a semi-synthetic dataset, is designed
for node feature shifts and comprises image-derived graphs with manually ap-
plied color features (CMNIST-color), making the color shift domain irrelevant
to the structure.

4.2 Implementation Details

In our experiments, we use GIN as the backbone model across all tests to main-
tain consistency. The optimal checkpoints were determined during the OOD
validation phase and subsequently applied for OOD testing. Our experiments
were conducted over three runs, each with a different random seed. We set the
learning rate at 0.001 and limited the training to 200 epochs. For batch sizes,
we used 32 for GOOD-Motif and GOOD-HIV datasets, and 128 for the GOOD-
CMNIST dataset.
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Table 1: Performance on synthetic and real-world datasets. Numbers in bold indicate
the best performance, while underlined numbers indicate the second best.

Synthetic Semi-
synthetic Real-world

Method Motif-base Motif-size CMNIST-
color

HIV-scaffold HIV-size

ERM [8] 68.66 ± 4.25 51.74 ± 2.88 28.60 ± 1.87 69.58 ± 2.51 59.94 ± 2.37
IRM [2] 70.65 ± 4.17 51.41 ± 3.78 27.83 ± 2.13 67.97 ± 1.84 59.00 ± 2.92

GroupDRO [2] 68.24 ± 8.92 51.95 ± 5.86 29.07 ± 3.14 70.64 ± 2.57 58.98 ± 2.16
VREx [16] 71.47 ± 6.69 52.67 ± 5.54 28.48 ± 2.87 70.77 ± 2.84 58.53 ± 2.88
DIR [37] 62.07 ± 8.75 52.27 ± 4.56 33.20 ± 6.17 68.07 ± 2.29 58.08 ± 2.31

CAL [33] 65.63 ± 4.29 51.18 ± 5.60 27.99 ± 3.24 67.37 ± 3.61 57.95 ± 2.24
GSAT [25] 62.80 ± 11.41 53.20 ± 8.35 28.17 ± 1.26 68.66 ± 1.35 58.06 ± 1.98

OOD-GNN [17] 61.10 ± 7.87 52.61 ± 4.67 26.49 ± 2.94 70.46 ± 1.97 60.60 ± 3.77
StableGNN [7] 57.07 ± 14.10 46.93 ± 8.85 28.38 ± 3.49 68.44 ± 1.33 56.71 ± 2.79

CIGA [4] 66.43 ± 11.31 49.14 ± 8.34 32.22 ± 2.67 69.40 ± 2.39 59.55 ± 2.56
DisC [6] 51.08 ± 3.08 50.39 ± 1.15 24.99 ± 1.78 68.07 ± 1.75 58.76 ± 0.91

DropEdge [28] 45.08 ± 4.46 45.63 ± 4.61 22.65 ± 2.90 70.78 ± 1.38 58.53 ± 1.26
GREA [20] 56.74 ± 9.23 54.13 ± 10.02 29.02 ± 3.26 67.79 ± 2.56 60.71 ± 2.20

CSIB (Ours) 70.18 ± 7.15 60.99 ± 5.57 37.40 ± 2.24 72.53 ± 2.01 61.33 ± 3.77

4.3 Baselines

In our experiments, we compare our method with general OOD generation meth-
ods, graph generation strategies, and graph augmentation methodologies. Addi-
tionally, we include ERM [8] as a foundational baseline. General OOD generation
algorithms include IRM [2], GroupDRO [29], VREx [16]. Graph generation algo-
rithms include DIR [37], CAL [33], GSAT [25], OOD-GNN [17], StableGNN [7],
CIGA [4] and DisC [6]. For graph augmentation, we evaluate against Drope-
dge [28] and GREA [20].

4.4 Experimental Analysis under Various OOD Scenarios

Our experimental assessment demonstrates the CSIB method’s capability in ad-
dressing OOD challenges across both synthetic and real-world graph datasets,
thereby substantiating the effectiveness of our approach.

Feature Level Shifts In the context of feature shifts, the CMNIST dataset
acts as a critical benchmark. Our model not only eclipses current methodologies
but also outperforms the state-of-the-art (SOTA) by a significant 12.7% margin,
as shown in Table 1. This remarkable performance gain is especially pronounced
when compared to approaches like CIGA, which also address PIIF scenarios
but perhaps do not fully exploit environmental cues. The success achieved on
the CMNIST dataset is a direct consequence of our model’s proficient utiliza-
tion of environmental features. This accomplishment aligns seamlessly with our
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method’s core focus on fortifying invariance against fluctuations in feature-level
distributions, thereby substantiating our initial hypothesis concerning the piv-
otal importance of addressing both FIIF and PIIF for OOD generalization.

Structural Level Shifts The GOOD-Motif dataset, designed to test structural
shifts, presents a different set of challenges. In base domain scenarios, which fea-
ture three distinct structural environment attributes, our model demonstrated its
ability to produce results consistent with established benchmarks. This achieve-
ment emphasizes our approach’s adept handling of structural variations inherent
to graph data, underscoring its adaptability and effectiveness in accommodating
a variety of structural contexts within graph-based datasets. The model’s robust-
ness was further evidenced in the size domain shift, where it surpassed prevailing
methods by a significant margin of 12.6%. This success underscores the model’s
resilience to variations in structural scale, attributed to the stable nature of the
invariant causal graph Gc amidst environmental changes. Despite the varying
size scales across different environments, the invariant causal graph Gc remains
consistent, anchoring the model’s focus on crucial causal features that transcend
environmental variations. This detailed evaluation illustrates our model’s abil-
ity to navigate and adapt to structural challenges, affirming its suitability for
complex graph data scenarios.

Real-world Data Performance In the challenging environment of the real-
world HIV dataset, our model showcased its robustness and dependability, out-
performing prior state-of-the-art methods in both the scaffold and size domains.
This achievement attests to the model’s capability in navigating the intricacies
of complex real-world data that often exhibit a blend of feature and structural
shifts. This success in a real-world context further emphasizes the robustness
and efficacy of our approach, underlining its strong alignment with the require-
ments for OOD generalization in GNNs. Our extensive experimental evaluation
across a range of datasets reinforces the central premise of our investigation. By
combining invariant principles with the GIB technique, we effectively address
the nuanced challenges of FIIF and PIIF scenarios. This thorough validation
not only demonstrates our model’s ability to maintain high predictive accuracy
and robustness across diverse OOD conditions but also represents a significant
advancement in graph-based learning methodologies.

4.5 Ablation Study

To further interrogate the efficacy of our model’s components, specifically ad-
dressing "why invariance" and "why information constraint", we conducted ex-
periments on both the HIV datasets, exploring scaffold shift and size shift sce-
narios, and the CMNIST dataset, examining color concept and covariate shifts
as shown in Fig. 3. Our experiments aimed to validate the effectiveness of our
model’s components in mitigating these challenges.
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Fig. 3: Left : Ablation study on HIV Dataset under Scaffold and Size Shifts. Right :
Ablation study on CMNIST-color Dataset under Covariate and Concept Shifts.

Our findings revealed that in the absence of the Invariance Principle guidance,
particularly when we did not apply environmental label-guided environmental
graph generation, our model experienced a significant performance drop of 16.1%
on the CMNIST dataset. This decrease was notably pronounced when the CM-
NIST dataset exhibited color shift scenarios, suggesting that the introduction of
environmental information could alleviate this issue. Moreover, further removal
of the information constraint led to a substantial decrease in model performance.
As discussed earlier, the information compression constraint effectively filters out
irrelevant graph features, particularly in PIIF scenarios. Our results underscore
the importance of these principles, as evidenced by the observed performance
decrements under concept shifts. We also conducted an ablation study on the
real-world drug dataset HIV. The performance on the HIV datasets drop without
either the invariant principle or GIB, aligning well with our propositions.

Hyperparameter Sensitivity Study In further investigation, we delve into
the impact of hyperparameters β and λ on the efficacy of our CSIB method, par-
ticularly within the contexts of the GOOD-Motif and CMNIST datasets. These
hyperparameters play pivotal roles: β modulates the integration of environmen-
tal information into the invariant learning process, while λ governs the strength
of the information bottleneck constraint. Adjusting these parameters offers in-
sights into the balance between capturing invariant features and mitigating the
influence of spurious correlations. In our hyperparameter sensitivity analysis,
we focused on the parameters β and λ, identified through preliminary experi-
ments as having optimal values of 0.1 and 0.01, respectively. To rigorously assess
the impact of these hyperparameters on our model performance, we systemat-
ically varied them across a set range of values: 0, 0.001, 0.01, 0.1, and 1. This
comprehensive exploration allowed us to observe the model’s behavior under di-
verse settings. In Fig. 4, we demonstrate the robustness of the CSIB method
to variations in hyperparameters β and λ. Our analysis reveals that while the
CSIB method maintains stability across a range of hyperparameter settings, it
exhibits sensitivity to the extremities of λ’s value spectrum. Specifically, perfor-
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mance degrades when λ is set too high or too low, highlighting the importance of
balanced regularization to mitigate the model’s susceptibility to spurious corre-
lations inherent in distribution shifts. Conversely, the impact of the information
constraint parameter β becomes more pronounced at higher values (0.1 and 1),
suggesting its efficacy in filtering out irrelevant information and reinforcing the
model’s focus on invariant features.
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Fig. 4: Sensitivity analysis of β (left) and λ (right). For each sensitivity study, we fix
other hyperparameters with the values selected from the previous experiments.

5 Conclusion

We introduce CSIB (Causal Subgraphs and Information Bottlenecks),
a novel framework designed to enhance Out-of-Distribution (OOD) generaliza-
tion in Graph Neural Networks. Our approach is grounded in the integration
of invariant causal graph generation and the information bottleneck principle,
addressing the critical challenge of identifying invariant features in graph data
that are reliable predictors across diverse environments. Key contributions of
our work include the development of an end-to-end framework that effectively
leverages environmental features into the causal graph generation process. This
framework employs mutual information theory to optimize the model, focusing
on extracting invariant causal graphs that capture the essential, environment-
independent structures within the graph data. Furthermore, our incorporation
of the information bottleneck principle allows for the compression of the graph
representation, effectively filtering out spurious features that could otherwise
lead to model instability and reduced predictive accuracy in OOD scenarios.
Empirically, our extensive experiments across various datasets, including both
synthetic and real-world scenarios, demonstrate the efficacy of CSIB in handling
different types of distribution shifts. Our framework shows significant improve-
ments in managing structural and feature-level shifts, underscoring its robust
generalization capability.
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