
Fundamental Matrix Estimation Using Relative
Depths

Yaqing Ding1 , Václav Vávra1 , Snehal Bhayani2 , Qianliang Wu3 ,
Jian Yang3 , and Zuzana Kukelova1

1 Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical
University in Prague, Prague, Czech Republic

2 Faculty of Information Technology and Electrical Engineering, Center for Machine
Vision and Signal Analysis, University of Oulu, Oulu, Finland

3 PCA Lab, Nanjing University of Science and Technology, Nanjing, China

Abstract. We propose a novel approach to estimate the fundamental
matrix from point correspondences and their relative depths. Relative
depths can be approximated from the scales of local features, which are
commonly available or can be obtained from non-metric monocular depth
estimates provided by popular deep learning-based methods. This makes
the considered problem very relevant. To derive efficient solutions, we ex-
plore new geometric constraints on the fundamental matrix with known
relative depths and present new algebraic constraints between the funda-
mental matrix and the translation vector. Using point correspondences
and their relative depths, we derive novel efficient minimal solvers for
two fully uncalibrated cameras, two cameras with different unknown focal
lengths, and two cameras with equal unknown focal lengths, respectively.
We propose different variants of these solvers based on the source of the
relative depth information. We present detailed analyses and compar-
isons with state-of-the-art solvers, including results with 86, 306 image
pairs from three large-scale datasets.
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1 Introduction

Estimation of the relative pose of two uncalibrated cameras from image cor-
respondences, also known as epipolar geometry or fundamental matrix estima-
tion, is a fundamental problem with many applications, e.g ., in Structure-from-
Motion (SfM) [44], localization [42, 47, 52], and augmented reality [43]. In these
applications, robust optimization algorithms, such as random sample consensus
(RANSAC) or its more modern variants [4,41] are often used to find the relative
pose of two cameras and potentially unknown internal calibration parameters,
such as focal lengths.

By far, the most common approach for estimating the epipolar geometry
between two cameras is based on point correspondences. For uncalibrated cam-
eras, the well-known 7-point or the linear 8-point solvers [25] are widely used
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in practice. For cameras with common unknown equal focal length, the relative
motion and common focal length can be estimated using six point correspon-
dences [24, 29, 30, 46]. Although these algorithms, especially the 7- and 8-point
algorithms, are quite efficient and simple to implement, they require a large num-
ber of point correspondences to be sampled in each iteration of RANSAC. It is
known that the number of iterations required for RANSAC-based algorithms
grows exponentially with the outlier ratio and the sample size, i.e., the number
of correspondences used for the estimation. Thus, especially in difficult image
matching situations where the outlier ratio is high, reducing the sample size can
lead to improvements in speed and accuracy of pose estimation.

Previous work has examined how to reduce the sample size for relative pose
estimation either by reducing the estimated degrees of freedom (DoF) using
additional information, e.g ., from an Inertial Measurement Unit (IMU) [13–15,
18, 40, 48], or by using additional information about correspondences such as
information from local affine frames [5, 7].

Bentolila et al . [7] proposed a solution to estimate the fundamental matrix us-
ing three affine features. For cameras with a common unknown focal length, two
affine correspondences are enough to estimate the epipolar geometry together
with the unknown focal length [5]. Although affine correspondences significantly
reduce the number of correspondences that need to be sampled, they are less
commonly used in practice. The reason is that affine covariant features are much
more expensive to compute compared to the most widely used feature detectors,
which usually produce scale and orientation estimates for "free" [6, 36].

Thus, recently, solvers that estimate the relative pose of two cameras using
scales and orientations of features have been proposed [3]. As the most closely
related work, the main idea of [3] is to assume an additional constraint in which
the orientations of local features in two images are related by the local affine
transformation. By combining this constraint and the affine constraints, a new
constraint on the epipolar geometry from the feature’s scale and orientation
has been proposed. Based on this assumption, scale- and orientation-covariant
features can provide two linear constraints for the fundamental matrix or the es-
sential matrix estimation. These constraints result in solvers with the same com-
plexity as point-based relative pose solvers that, however, halve the number of
correspondences required for the estimation. On the other hand, used scales and
orientations of features introduce significantly higher noise than point matches.

Several solutions have recently been proposed for the relative pose of cali-
brated cameras. The scales and scale ratios of the features, together with the
point correspondences, were used to estimate the relative pose of two calibrated
cameras in [34] and of a multi-camera system in [22]. Feature rotations were used
to estimate the relative pose of two calibrated cameras from four correspondences
in [39] and of two uncalibrated cameras from five correspondences in [1]. Feature
scales and rotations were also used to estimate homography [2, 11] and relative
pose with known vertical direction [12]. A relative pose solver for calibrated
cameras that uses a combination of a deep-learned non-metric monocular depth
predictor with one affine correspondence was proposed in [17]. Most recently,
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Astermark et al . [27] showed a closed-form solution to the relative pose of two
calibrated cameras with known relative depth from scale ratios. In addition, they
proposed a neural network to estimate the relative depth.

In this paper, we also assume that the relative depth of the matched keypoints
is known, and explore relative pose estimation using this additional information.
However, in contrast to previous work, we do not assume that the cameras are
calibrated. Information about relative depth is practical since it can be approx-
imated using different inputs, e.g ., the scales of scale-covariant features [36] or
the non-metric depth maps estimated by monocular depth estimation meth-
ods [20,51]. The main contributions of the paper are:

• A new relative depth constraint on the fundamental matrix estimation is
proposed. In order to find efficient solutions, we further derive new algebraic
constraints between the fundamental matrix and the translation vector.

• Based on these constraints, we derive new efficient solutions to fundamen-
tal matrix estimation using point correspondences and their relative depths,
including 4 point correspondences with their relative depths (4p4d) for gen-
eral fundamental matrix estimation, 4 point correspondences with three rel-
ative depths (4p3d) for the case of different and unknown focal lengths, and
3 point correspondences with three relative depths (3p3d) for the case of
equal and unknown focal length.

• We evaluate the proposed solvers on three large-scale datasets (KITTI ,
Phototourism , and ETH3D ) using SIFT and Superpoint features with dif-
ferent matching strategies (mutual nearest neighbors and LightGlue). We
evaluate three different strategies to obtain relative depths: depth maps from
depth cameras or multi-view stereo, depth maps estimated by a monocular
depth prediction algorithm [51], and approximate depths from feature scales.

2 Preliminaries

Assume that a set of 3D points {Xi}, i = 1, . . . , n is observed by two cameras
with projection matrices K1[I | 0] and K2[R | t]. Let {mi1,mi2}, i = 1, . . . , n be
a set of n 2D point correspondences, i.e., the projections of 3D points {Xi}, i =
1, . . . , n in the first and the second camera, respectively. Then we have

λi1K
−1
1 mi1 = Xi, λi2K

−1
2 mi2 = RXi + t, (1)

where λi1 and λi2 are the depths of the 3D point Xi in the first and the second
camera, respectively. By eliminating the 3D point Xi from (1), we get

σimi2 = K2RK−1
1 mi1 +

1

λi1
K2t, (2)

where σi =
λi2

λi1
is the relative depth of the point Xi, w.r.t. the second and the first

camera. In this paper, we assume that the relative depth can be obtained from
different geometric entities and discuss solutions to the problem of fundamental
matrix estimation from point correspondences with known relative depths.



4 Y. Ding et al.

focal length f1 focal length f2

3D point Xi
3D scale ηi

de
pt
h λ

i1 depth λ
i2

image point xi1

image point xi2scale si1
scale si2

(a) (b)

Fig. 1: (a) Illustration of the derived constraint (4) relating feature scale, depths of
the 3D point in two cameras, and their focal lengths. (b) Example RGB images from
the three datasets, and their corresponding disparity images obtained using Depth
Anything [51]. Top row: Phototourism , middle row: KITTI , bottom row: ETH3D dataset.

Relative Depth from Scales. First, we show that the relative depth can be
approximated from features that provide scale information, such as SIFT [35]
and SURF [6]. Assume a simplified scenario where a 3D sphere with radius ηi
projects into circles with radii si1 and si2 in two cameras with focal lengths f1
and f2. From the law of similar triangles (cf . Fig. 1), it holds

si1
ηi

=
f1
λi1

and
si2
ηi

=
f2
λi2

. (3)

Hence
σi =

λi2

λi1
=

si1f2
si2f1

, (4)

where λi1 and λi2 are the depths of the center of the 3D sphere in the first and
the second camera and σi is their ratio. In practice, the 3D sphere projects to
ellipses in 2D, and the circles defined by the feature scales do not back-project
to exactly the same 3D ellipsis. However, using feature scales (si1, si2) in (4)
usually provides a good approximation of the relative depth σi. Note that in
this case, the relative depth σi is parameterized using the focal lengths (f1, f2),
which are unknown for uncalibrated cameras.
Relative Depth from Local Affine Transformation. Affine-covariance [38]
is a desirable property of local features that provides strong constraints for
camera geometry problems. For an affine correspondence, we have a triplet
(mi1,mi2,Ai), where Ai is a 2× 2 linear transformation that encodes the local
affine frame. It is known [3] that the scales of the features are proportional to
the area of the affine image region, i.e.,

√
det(Ai) =

si2
si1

. Therefore, we have the
constraint σi = 1/

√
det(Ai) · f2

f1
.

Relative Depth from Learned Scales. Unlike SIFT and features that can
provide scale information, state-of-the-art learned detectors such as Superpoint [9],
DISK [49], D2-Net [16] do not provide such scales. However, there are several
deep learning-based methods [32, 50] that can assign scales to arbitrary key-
points. Thus, it is possible to use modern features with scale information.
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Relative Depth from Learned Depths. Recently, several learning-based
methods [20, 51] that provide non-metric monocular depth estimates, i.e., the
depth estimates scaled with an unknown scale factor k, have been proposed.
However, as we will show later, even depths that are only known up to an un-
known scale ki in the image i, can be used to obtain the relative depth that can
be used for fundamental matrix estimation.

3 Fundamental Matrix Estimation From Four Points and
Their Relative Depths

In this section, we first discuss the general case where we do not have any prior
on the cameras’ intrinsic parameters, i.e., the calibration matrices K1 and K2

are unknown general triangular matrices. Let T = K2t. Based on (2), we have

1

λi1
T = σimi2 −K2RK−1

1 mi1, (5)

Multiplying (5) by the skew-symmetric matrix [T]× of the vector T results in

[T]×σimi2 − Fmi1 = 0, with F = [T]×K2RK−1
1 , (6)

where F is the unknown fundamental matrix that contains information about
the relative pose of two cameras and their intrinsic parameters. For the known
relative depths σi, equation (6) provides three new linear constraints on 12 un-
known elements of the fundamental matrix F and the translation vector T. Given
four point correspondences {mi1,mi2}, i = 1, . . . , 4, with known relative depths
σi, i = 1, . . . 4, we can obtain the following system of 12 linear equations

[T]×σimi2 − Fmi1 = 0, i = 1, . . . 4 (7)

which can be rewritten as

B[f ,T]⊤ = 0, (8)

where B is a 12 × 12 matrix and f is a 9 × 1 vector containing the elements of
the fundamental matrix F, i.e., f = vec(F). For non-collinear points mij , i =
1, . . . , 4; j = 1, 2, the matrix B has rank 11. In addition, the matrix F estimated
using (8) is already singular and thus det(F) = 0 does not add any additional
constraint. For the proof of the rank deficiency of the matrices B and F, see
the Supplementary Material (SM). Therefore, for general unknown calibration
matrices, the minimal number of point correspondences, together with their
relative depths, necessary for the fundamental matrix estimation is four. In this
case, the solution can be efficiently obtained by solving the linear homogeneous
system of 11 equations (8), i.e., as the null space vector of the matrix B in (8).
Derivation with feature scales. If the relative depths σi are not directly
known but are approximated using scales of features, i.e., σi ≈ (si1f2)/(si2f1),
then the equations that have to be solved have a slightly different structure since
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the expression for σi contains unknown f1, f2. Substituting (4) into (6), we have

si1
si2

f2
f1

[T]×mi2 − Fmi1 = 0. (9)

For a pair of images, f2
f1

is an unknown constant, which can be absorbed into
the translation T. Let T̃ = f2

f1
T and si =

si1
si2

. For four correspondences, we have

[T̃]×simi2 − Fmi1 = 0, i = 1, . . . , 4. (10)

Equations (10) have the same structure as (7) and can again be solved by com-
puting the one-dimensional null space of a 11× 12 coefficient matrix. The same
solver also works for the case where the relative depth is approximated from a
local affine transformation as σi ≈ 1/

√
det(Ai) · f2

f1

A similar situation arises when the depths λij of the points Xi in the jth

image are known only up to an unknown scale factor kj . Such depths can be
obtained using a monocular depth estimation method [20,51]. In this case

σi =
λi2

λi1
=

k2λ̃i2

k1λ̃i1

, (11)

where λ̃i1, λ̃i2 are known depths from a monocular depth estimation, and k1, k2
are unknown scales of these depths. For a pair of images, k1, k2 are constant
numbers. Substituting (11) into (6), the scale factor k2

k1
can be absorbed into

translation T and we obtain a linear system with the same structure as (10).
Thus, the proposed linear solver works for general unknown calibration ma-

trices Ki, i.e., Ki of a general triangular form with unknown focal length, skew,
aspect ratio, and principal point, and for cases when the scales of the depths are
unknown, i.e., they are known up to an unknown scale factor in each image.

4 Focal Length Problems

In many practical scenarios, additional assumptions about the structure of cal-
ibration matrices can be used. For modern CCD or CMOS cameras, it is often
reasonable to assume that the cameras have square-shaped pixels, and the prin-
cipal point coincides with the image center [24]. This is a widely used assumption
in many camera geometry solvers, where the only unknown intrinsic parameters
are focal lengths, and the calibration matrices have the form Ki = diag(fi, fi, 1).

4.1 Different and Unknown Focal Lengths

First, let us assume that Ki = diag(fi, fi, 1), i = 1, 2 and, in general, f1 ̸= f2.
By solving the system of equations (6), we simultaneously solve for T and F.
However, T and F are not independent and are related by

F = [T]×K2RK−1
1 . (12)
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Constraints (12) can not be simply combined with (6) since they introduce ad-
ditional unknowns from R and f1, f2, and would have resulted in a very com-
plex solver. However, these constraints can be used to derive new constraints
that contain only elements of T and F. To do this, we can use the elimination
ideal method [8], a method known from algebraic geometry that was recently
used to derive many efficient camera geometry solvers [30]. In this case, we first
create an ideal J generated by the 9 polynomials (12) [8]. Then the unknown
elements of the rotation matrix R and the focal lengths f1, f2 are eliminated
from the generators of J by computing the generators of the elimination ideal
J1 = J ∩ C[f11, . . . , f33, Tx, Ty, Tz]. Here, fij are the entries of F. The elimina-
tion ideal J1 can be computed offline using some algebraic geometry software
like Macaulay 2 [21]. In our case, the elimination ideal J1 is generated by three
quartic polynomials, one of which has the form

−f2
11f13f23+f11f

2
13f21−f11f21f

2
23−f2

12f13f23+f12f
2
13f22−f12f22f

2
23...

+f13f
2
21f23+f13f

2
22f23+f12f32TyTz+f11f31TyTz−f21f31TxTz−f22f32TxTz=0.

(13)

The form of the remaining two polynomials together with the input code for
Macaulay2 is provided in the SM. Although there are three generators, it can be
shown that they provide only one algebraic constraint on the elements of T and
F, for details see the SM. Note that similar additional constraints on T and F
cannot be derived for general triangular matrices K1 and K2.

Each point correspondence together with the known relative depth gives us
three linear homogeneous constraints of the form (6) on the 12 unknown ele-
ments of T and F. Therefore, three point correspondences with three relative
depths result in nine linear homogeneous equations. To solve this problem, we
thus need, in addition to the quartic constraint (13) from the elimination ideal,
one more constraint. This constraint can be obtained from an additional point
correspondence, i.e., we can use the standard linear epipolar constraint on F.
Four points with three relative depths give 10 linear homogeneous equations

[T]×σimi2 − Fmi1 = 0, i = 1, 2, 3

m⊤
42Fm41 = 0,

(14)

which can be rewritten as

B[f ,T]⊤ = 0, (15)

where the matrix B is a 10 × 12 matrix. The solution to the vector [f ,T]⊤

can thus be written as a linear combination of the two basis vectors from the
2-dimensional null space of the matrix B as

[f ,T]⊤ = α1N1 + α2N2, (16)

where α1, α2 are new unknowns. Since (12) is homogeneous, we can set α2 = 1.
By substituting parameterization (16) into (13), we obtain a quartic equation

in the unknown α1. In practice, this equation has one trivial solution. Thus, we
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only need to find the roots of a cubic univariate polynomial. In general, there
are up to three possible solutions to the fundamental matrix F.
Derivation using local feature scales. If scales of features are used to ap-
proximate relative depths, the linear equations have the form (10). Therefore,
instead of solving for F and T, we solve for F and T̃ = f2

f1
T. The constraint that

relates elements of F and T̃ can be obtained using a similar elimination ideal
technique, i.e., by eliminating the rotation and focal length parameters from the
ideal generated by the nine equations F = f1

f2
[T̃]×K2RK−1

1 . The elimination
ideal J2 is generated by three cubic polynomials, one of which has the form

f13f21f31 − f11f23f31 − f12f23f32 + f13f22f32 + f13T̃yT̃z − f23T̃xT̃z = 0. (17)

The final solver performs the same steps as for known relative depths, however,
in this case it solves the univariate cubic polynomial (17). More details about
this solver are given in the SM. Note that a similar 4p3d (4-points-3-depths)
solver cannot be derived for the case with an unknown scale factor k = k2

k1
, since

in this case, in contrast to the scale factor f2
f1

, we introduce a new unknown k
and thus also increase the DoF that must be estimated.

4.2 Equal and Unknown Focal Length

By assuming unknown equal focal lengths, i.e., K1 = K2 = diag(f, f, 1), which
is a useful assumption, e.g ., when estimating the motion of a single uncalibrated
camera, we decrease the DoF by one compared to the different unknown focal
length case described in Section 4.1. Thus, we need at least three points with
three relative depths to solve this problem. The problem can be solved using the
null-space parameterization and the elimination ideal method, similarly to the
4p3d solver for different focal length case. In this case, three points with three
relative depths give us nine homogeneous equations of the form (6). Therefore,
the solution to the vector [f ,T]⊤ can be written as a linear combination of the
three basis vectors of a 3-dimensional null space of the coefficient matrix with
two new unknowns β1 and β2. This parameterization can be plugged into the
generators of the elimination ideal that we obtain by eliminating elements of
the rotation matrix R and the focal length f from the generators of the ideal
generated by (12). In this case this results in solving one cubic and one quartic
equation in two unknowns. These equations can be solved using the Gröbner
basis method [31], where the final solver performs Gauss-Jordan elimination of
a 6× 10 matrix and extracts solutions from the eigenvectors of a 4× 4 matrix.
Hence, the same solver works for the case where scales of features are used to
approximate relative depths. For the case of an unknown scale factor k = k2

k1
, a

similar solver that, however, uses four points and three relative depths can be
derived. More details on these solvers can be found in the SM.

In this section, we describe an alternative solution, which is based on homog-
raphy parameterization and which results in a more efficient 3p3d solver for the
case of equal unknown focal lengths. Three points define a plane in the 3D space.
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Let n be the unit normal vector of the plane with respect to the first camera
frame, and let d denote the distance from the plane to the optical center of the
first camera. Then we have

n⊤Xi = d ⇒ 1

d
n⊤K−1mi =

1

λi
. (18)

Substituting (18) into (2) we have

σimi2 = Gmi1, with G = KHK−1, and H = R+
t

d
n⊤, (19)

where G is 2D homography, and H is Euclidean homography. Given 3 point
correspondences, we have

[σimi1, σimi2, σimi3] = G[mi1,mi2,mi3] (20)

and G is given by [σimi1, σimi2, σimi3] · [mi1,mi2,mi3]
−1. The Euclidean ho-

mography matrix H can be formulated as H = K−1GK. As shown in [37,53], a
Euclidean homography matrix should satisfy the singular value constraint

median(svd(H)) = 1, (21)

where the second largest singular value of H should be 1. Hence, we have

det(H⊤H− I3) = 0. (22)

After substituting H = K−1GK into (22), we obtain a quadratic equation in f2.
There are up to two possible solutions since the focal length should be positive.
Note that, we still need to verify if the focal length satisfies (21), as (22) is only
a necessary condition for (21). Once the focal length is known, the Euclidean
homography matrix can be decomposed into rotation and translation.

5 Experiments

We evaluate the proposed solvers, i.e., the 4p4d, 4p3d, and 3p3d solvers, on
both synthetic data and real-world images. For general fundamental matrix es-
timation, i.e., in general, different focal lengths, we compare our 4p4d and 4p3d
solvers to the most closely related 4SIFT solver from [3], the standard 7pt al-
gorithm [25], and the 5ORI solver from [1] (using 5 point correspondences with
known feature rotations). For the equal and unknown focal length case, we com-
pare the proposed 3p3d solver with the 3SIFT solver [3] and the 6pt solver [30].

5.1 Synthetic Evaluation

We generate 200 random 3D points in the cube [−10, 10] × [−10, 10] × [2, 22]
and 5K camera pairs with random relative poses. In the case of two equal focal
lengths, we set them to 1000 px, and for the case of different focal lengths, we
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(a) (b) (c) (d)

Fig. 2: A comparison of the performance of point-based and the proposed solvers in
the presence of image noise (a,b), and relative depth noise (c,d) and 2px image noise.

set them to 1000 px and 2000 px. For the case of different focal lengths, we
compare our 4p4d and 4p3d solvers with the 4SIFT solver [3] and the standard
7pt algorithm [25]. For the case of equal focal lengths, we compare our 3p3d
solver with the 3SIFT solver [3] and the 6pt solver [30]. We evaluate solvers
performance by studying the error in the estimated rotation w.r.t. the ground
truth, defined as ϵR = 2arcsin

(
∥Rgt−Re∥

2
√
2

)
. We use the arcsin formulation for

rotation [10], since the arccos metric suffers from precision issues with noise-free
data. Errors in translation and focal length estimates are studied in the SM.

First, we test the performance of all solvers in the presence of Gaussian noise
with standard deviation σ, added to the image points in both cameras. Fig.
2(a,b) shows the rotation error (in degrees) for different focal lengths (a) and
equal focal lengths (b). Here, we depict the results as box plots that show the
25% and 75% quantile values as boxes with a horizontal line for the median.
Observe that our 4p4d (followed by 4p3d solver) and 3p3d solvers have the best
accuracy in the presence of image pixel noise.

We also test the performance of all the solvers in the presence of noise in
the relative depths. We add Gaussian noise to the relative depths and vary the
standard deviation σ as a (%) of the relative depths. To simulate real-world
scenarios, we also add 2px Gaussian noise to the images. Fig. 2(c,d) show the
rotation error (in degrees) for different focal lengths (c) and equal focal lengths
(d). We note that for 0.5% noise in the relative depths, our solvers, 4p4d, 4p3d,
and 3p3d have better or comparable accuracy to the SOTA solvers. For larger
noise levels, our solvers return larger errors than the point-based solvers. How-
ever, as shown next, our solvers perform at least comparable to the point-based
solvers under depth noise levels observed in the real world.

5.2 Real-world Experiments

Datasets. In order to test the proposed solvers 1 on real-world data, we choose
the Phototourism [26], the KITTI odometry [19], and the ETH3D [45] datasets.
They cover three situations: unordered images for Structure-from-Motion, se-
quential images in an outdoor environment, and sequential images in an indoor

1 https://github.com/yaqding/FMRD

https://github.com/yaqding/FMRD
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environment. Fig. 1 shows example images and their corresponding disparity
maps. The images of the Phototourism dataset were collected from multiple
cameras obtained at different times, from different viewpoints, and with oc-
clusions. It is a challenging dataset that is commonly used as a benchmark
dataset [26] and can be used to evaluate the performance of methods in a wide
range of situations. We used nine test scenes with 43, 678 image pairs from
this dataset, including images, ground-truth poses, and sparse depth maps. The
KITTI odometry benchmark consists of 22 stereo sequences. Only 11 sequences
(00–10) are provided with ground truth trajectories. We thus used these 11 se-
quences for evaluation. In total, 23, 190 image pairs were used. The ETH3D SLAM
dataset covers a variety of indoor and outdoor scenes. A DSLR camera as well as
a synchronized multi-camera rig with varying field-of-view was used to capture
images. In total, 19, 438 image pairs were used from ETH3D dataset.
Robust estimation. For testing minimal solvers on real-world data, we use
Graph-Cut RANSAC [4] (GC-RANSAC). In GC-RANSAC (and other RANSAC
variants with local optimization), two different solvers are used: (a) one for esti-
mating the pose from a minimal sample and (b) one for fitting to a larger sample
when doing final pose polishing on all inliers or in the local optimization step.
For (a) the main goal is to solve the problem using as few correspondences as
possible since the number of RANSAC iterations depends exponentially on the
number of correspondences required for the pose estimation. All the proposed
solvers, as well as state-of-the-art solvers that are used for comparison, are ap-
plied in this step of the GC-RANSAC. The goal of (b) is to generate a pose
hypothesis that minimizes the error on all detected inliers. Similarly to previous
works that used GC-RANSAC for relative pose estimation [3], in (b) we use the
normalized 8-point algorithm [23] for linear least squares fitting.
Feature detection and matching. There are mainly two types of feature de-
tectors, handcrafted features and learning-based features. For handcrafted fea-
tures, we choose SIFT. The scale and orientation information from the SIFT
features can be used for our solver, the related SIFT-based solver [3], and the
5ORI solver [1]. For deep learning-based features, we choose the popular Super-
point [9] (SP) features, which are used in SfM and localization pipelines [42]. For
feature matching, we also evaluated two methods. One is the classical mutual
nearest neighbors (NN) combined with the standard ratio test [36]. The other is
the state-of-the-art deep learning-based feature matching method LightGlue [33]
(LG), which shows significant improvement over classical matching methods. In
general, we use four different combinations of feature detection and matching:
SIFT+NN, SIFT+LG, SP+NN, and SP+LG. Due to the space limitation, the
results of SP+NN are provided in the SM.
Relative Depth Estimation. We use three methods to obtain the relative
depth: i) Relative scale. Given the SIFT features, the relative depth can be di-
rectly approximated from the scales. For Superpoint, we employ the Self-scale-
ori [32] scale estimator to obtain the scale and orientation (the orientation is used
for the originally SIFT-based solvers [1, 3]). ii) Depth map. The Phototourism
and ETH3D datasets provide depth images that can be used to obtain the relative
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depth. For the KITTI dataset, we use ground truth poses for triangulation to
get the relative depth. iii) Monocular depth estimation. Depth Anything [51] is
one of the state-of-the-art techniques for estimating intra-image relative depth
(depth of the image up to a scale factor). We use this intra-image relative depth
for inter-image relative depth estimation between image pairs. We used a pre-
trained model not trained on our datasets. While using depth maps or SIFT
features does not incur additional computation, incorporating learning-based
methods, such as Depth Anything [51] or Self-scale-ori [32], introduces addi-
tional computational costs. For example, on a single RTX4090, the inference
time for Depth Anything [51] (small model) is ∼ 3ms. Note that in some appli-
cations, depth estimation methods are also used for other tasks, and thus this
computational overhead is not purely introduced by the pose estimation method.
Experimental results. i) Fundamental matrix estimation for general intrin-
sics. Table 1 shows the rotation, translation (in degrees) errors, and run-times
(in milliseconds) on the Phototourism , KITTI , and ETH3D datasets for funda-
mental matrix estimation. Since the Phototourism and ETH3D datasets are very
challenging, all methods fail on some pairs. For each dataset, we first obtain the
median of the rotation and translation errors for each sequence / scene, and then
report the mean over all the sequences / scenes. Given accurate relative depth,
the proposed methods outperform the existing methods on all the datasets with
different features in terms of speed and accuracy. However, for Phototourism
and ETH3D datasets, when using relative depth approximated from SIFT scales
or monocular depth estimation, there is a slight gap compared to point-based
solvers. There are mainly two reasons: first, relative depth from SIFT scales may
not work well for images collected from significantly different viewpoints; sec-
ond, we used the pre-trained Depth Anything model which can give imprecise
depth estimates for our datasets. For the KITTI dataset, the proposed methods
are comparable or slightly better than point-based solvers. Based on the results,
SIFT+NN is still a good choice for sequential datasets with textured scenes,
e.g ., KITTI. SIFT can provide good enough features, and NN is good enough
to give good matches under small motion. However, for challenging datasets
(Phototourism , ETH3D ), SP+LG can significantly improve performance, espe-
cially translation estimation. On the other hand, LightGlue usually gives more
matches, and sometimes more outliers. Thus, SIFT+LG and SP+LG are more
time consuming than SIFT+NN. Note that the 4SIFT and 5ORI solvers cannot
make use of relative depth or Depth Anything for uncalibrated cameras.
ii) Equal and unknown focal length. To use the Phototourism dataset for test-
ing equal and unknown focal length solvers, we resize the image pairs to have
the same focal length. The KITTI and ETH3D datasets are captured from a single
camera, and we did not do any preprocessing. We used the 6pt solver for non-
minimal fitting. Table 2 shows the rotation, translation (in degrees), and focal
length errors, and run-times (in ms). Here, we only show the results of SP+LG,
remaining results are in the SM. With the equal focal length constraint, the
overall performance is much better. The proposed 3p3d solver is always among
the top-performing methods in terms of speed and accuracy.
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Table 1: Rotation and translation errors (in degrees), and run-times (in milliseconds)
on the Phototourism , KITTI , and ETH3D datasets for fundamental matrix estimation.
The best and the second best methods are highlighted.

Feature Depth Method
Phototourism KITTI ETH3D

ϵR(◦) ϵt(
◦) τ(ms) ϵR(◦) ϵt(

◦) τ(ms) ϵR(◦) ϵt(
◦) τ(ms)

SI
F
T

+
N

N

- 7pt 2.58 14.7 2.74 0.11 0.59 3.78 2.34 45.7 2.12

Relative depth 4p4d 1.90 11.2 1.59 0.09 0.56 2.63 1.61 27.5 1.54
4p3d 1.90 10.4 2.94 0.10 0.57 4.62 1.67 28.4 2.59

SIFT

4SIFT 2.69 16.7 3.29 0.12 0.60 3.61 2.52 50.9 2.30
4p4d 2.69 16.8 1.47 0.11 0.59 2.46 2.60 51.5 1.89
4p3d 2.75 18.0 2.01 0.11 0.60 3.29 2.62 52.0 1.99
5ORI 2.82 17.8 2.84 0.12 0.60 4.08 2.65 53.4 2.67

DepthAny 4p4d 2.73 17.4 1.50 0.11 0.60 2.69 2.67 51.2 1.68
4p3d 2.76 17.9 2.95 0.11 0.60 5.25 2.62 50.3 3.09

SI
F
T

+
L
G

- 7pt 3.33 13.9 4.84 0.16 0.69 5.19 2.36 46.2 2.57

Relative depth 4p4d 2.22 9.23 3.27 0.10 0.56 4.94 1.53 24.9 1.70
4p3d 2.20 8.13 4.81 0.11 0.59 6.61 1.65 27.2 2.92

SIFT

4SIFT 4.08 17.1 5.04 0.17 0.72 6.29 2.57 52.2 2.58
4p4d 4.14 17.0 2.78 0.16 0.71 4.96 2.63 53.8 2.12
4p3d 4.17 17.2 3.80 0.16 0.70 6.18 2.65 53.7 2.25
5ORI 4.41 18.1 4.66 0.16 0.71 6.55 2.67 54.3 3.14

DepthAny 4p4d 4.10 16.9 3.32 0.17 0.72 5.29 2.61 52.2 1.86
4p3d 4.19 17.5 3.69 0.16 0.70 7.53 2.56 50.8 3.53

SP
+

L
G

- 7pt 2.62 10.6 7.05 0.18 0.67 3.81 1.47 27.1 3.89

Relative depth 4p4d 1.90 7.24 4.66 0.13 0.59 2.63 0.68 11.5 2.00
4p3d 1.83 6.24 6.84 0.14 0.62 3.71 0.75 11.2 3.42

Self-sca-ori

4SIFT 3.32 13.3 5.98 0.17 0.67 3.43 1.79 39.8 2.75
4p4d 3.31 13.1 4.70 0.17 0.66 2.73 1.74 37.6 2.34
4p3d 3.29 13.3 5.76 0.17 0.66 3.35 1.77 37.2 4.01
5ORI 3.57 14.2 6.56 0.17 0.66 3.68 1.91 43.0 3.58

DepthAny 4p4d 3.32 13.3 4.98 0.17 0.67 2.78 1.77 38.8 2.33
4p3d 3.33 13.3 8.87 0.17 0.67 5.01 1.74 37.1 4.17

Degeneracies. Similarly to standard point-based solvers, there are several de-
generate cases to consider. Pure rotation and four coplanar points present de-
generacy for both the 4p4d and 4p3d cases (the rank of matrix B in (8) is 9). In
such instances, a homography should be utilized. Pure rotation does not result
in degeneracy for the 3p3d scenario, as the homography formulation is employed
in this case. Pure translation also generates some degeneracies for focal length
recovery [28] (See Tab 2, the focal length estimation fails on the KITTI dataset).
Limitations. In this paper, we proposed new relative pose solvers for fundamen-
tal matrix estimation from point correspondences and relative depths. If precise
relative depths are available, these solvers outperform the state-of-the-art point-
[25], scale and orientation- [3], and orientation-based [1] solvers. However, if
the relative depths are approximated by feature scales (either extracted from
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Table 2: Rotation and translation errors (in degrees), focal length error, and run-times
(in milliseconds) on the Phototourism , KITTI , and ETH3D datasets for the equal and
unknown focal length problem. The best and the second best methods are highlighted.

Feature Depth Method
Phototourism KITTI ETH3D

ϵR(◦) ϵt(
◦) ϵf τ(ms) ϵR(◦) ϵt(

◦) ϵf τ(ms) ϵR(◦) ϵt(
◦) ϵf τ(ms)

SP
+

L
G

- 6pt 1.22 3.82 0.09 34.0 0.13 0.63 0.77 21.4 0.81 11.0 0.23 21.6

Relative depth 3p3d 1.11 3.47 0.09 23.4 0.10 0.56 0.78 14.4 0.70 9.91 0.22 13.3

Self-sca-ori 3SIFT 1.20 3.76 0.10 31.1 0.14 0.63 0.78 28.6 0.81 11.6 0.24 24.7
3p3d 1.19 3.73 0.10 20.1 0.13 0.62 0.78 13.5 0.79 11.4 0.23 12.2

DepthAny 3p3d 1.18 3.72 0.10 23.6 0.13 0.63 0.78 15.1 0.80 11.4 0.24 13.2

SIFT or learned scales [32]) or extracted from non-metric monocular depth esti-
mates [51], the performance of the proposed solvers degrades and is sometimes
even worse than the performance of the standard 7pt solver. The performance
drop depends on the used features (SIFT vs. SP) and the matching method (NN
vs. LG). Note that this performance drop is observed for all state-of-the-art
solvers that use scales and orientations of features for the estimation. The drop
is especially visible when using the LG matcher. In this scenario, it is still prefer-
able to use the standard 7pt solver if no precise relative depths are available.
Note that prior work [1,3] did not consider learned features and learned match-
ers and therefore did not notice this behavior. Learning-based monocular depth
estimation [51] and estimation of scales and orientations of features [32] are ac-
tive fields of research with rapid progress. Naturally, improved depth and scale
estimates will automatically improve the performance of our solvers (as visible
from their superior performance in the presence of precise relative depths).

6 Conclusion

We presented several different efficient minimal solvers for estimating the relative
pose of uncalibrated or partially calibrated cameras from point correspondences
and their relative depths. We derived different variants of these solvers based
on the source of relative depth information. In extensive real experiments, we
showed that in the presence of accurate relative depths, the proposed solvers out-
perform point- [25], scale and orientation- [3], and orientation-based [1] solvers.
Although the combination of our solvers with learning-based monocular depth
estimates [51] and scale estimates [32] does not, in general, outperform the stan-
dard 7pt solver when using LightGlue, we hope that with future progress in
these learning-based techniques, our methods will be a very useful alternative to
point-based solvers in the future. For now, the proposed algorithms can be used
as complements to point-based algorithms to increase the reliability and speed
for relative pose estimation. In addition, the new constraints derived between the
fundamental matrix and the relative depth may also provide useful information
for learning-based monocular depth estimation.
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