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Abstract. Existing natural image matting algorithms inevitably have
flaws in their predictions on difficult cases, and their one-step predic-
tion manner cannot further correct these errors. In this paper, we in-
vestigate a multi-step iterative approach for the first time to tackle
the challenging natural image matting task, and achieve excellent per-
formance by introducing a pixel-level denoising diffusion method (Diff-
Matte) for the alpha matte refinement. To improve iteration efficiency,
we design a lightweight diffusion decoder as the only iterative compo-
nent to directly denoise the alpha matte, saving the huge computa-
tional overhead of repeatedly encoding matting features. We also pro-
pose an ameliorated self-aligned strategy to consolidate the performance
gains brought about by the iterative diffusion process. This allows the
model to adapt to various types of errors by aligning the noisy sam-
ples used in training and inference, mitigating performance degradation
caused by sampling drift. Extensive experimental results demonstrate
that DiffMatte not only reaches the state-of-the-art level on the main-
stream Composition-1k test set, surpassing the previous best methods
by 8% and 15% in the SAD metric and MSE metric respectively, but
also show stronger generalization ability in other benchmarks. The code
will be open-sourced for the following research and applications. Code is
available at https://github.com/YihanHu-2022/DiffMatte.

Keywords: Image matting · Diffusion process · Iterative refinement

1 Introduction

Natural image matting is an important task in computer vision, serving the
purpose of isolating foreground objects from their backgrounds. Mathematically,
a natural image can be expressed as a linear combination of the foreground
F ∈ RH×W×C , background B ∈ RH×W×C , and the alpha matte α ∈ RH×W ,
described as:

Ii = αiFi + (1− αi)Bi, α ∈ [0, 1] , (1)
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Fig. 1: DiffMatte introduces the diffusion process to solve the natural image matting
problem. By iteratively correcting the prediction, our method obtains state-of-the-art
matting accuracy. DiffMatte can be embedded into arbitrary matting encoders, which
makes its application scenarios more flexible and versatile

Since the foreground color Fi, the background color Bi, and the alpha value α
are left unknown, solving for alpha matte is a highly ill-posed problem. To tackle
this, the manually labeled trimaps are used to guide the extraction of foreground
opacity with modern deep neural networks [27,50,66,72].

Although the performance of previous one-step matting models keeps on in-
creasing, they still cannot perfectly predict the alpha matte on complex cases,
producing conspicuous artifacts or fine area flaws. Considering the success of
iterative approaches on segmentation tasks [8, 61, 70], it is an intuitive idea to
introduce the iterative mechanism for alpha matte refinement. However, coarse
masks are enough to provide semantic priors to guide the iteration of segmen-
tation methods, while matting methods rely on trimap to specifically exploit
opacity information in images, which cannot be replaced by coarse alpha mat-
tes. In addition, there is no good way to convert alpha matte into usable trimap.
This inconsistency in the form of guidance and prediction prevents the mat-
ting task from borrowing the mature iteration framework of the segmentation
method, hindering the exploration of iterative alpha matte refinement.

Recently, the advent of denoising diffusion models [25, 62, 63] provide an
iterative process for high-fidelity and fine-grained generation [13,52]. We notice
that this unique noising and denoising process of the diffusion method naturally
forms an iterative paradigm, which avoids the inconsistency between trimap and
alpha matte by utilizing the noised alpha matte as additional prior information.
In addition, the diffusion method can control this guidance prior by changing
the input scaling of noise, and customizing the entire iterative process through
the noise schedule. This allows a more flexible utilization of the alpha matte to
improve matting quality.

However, applying the diffusion process to natural image matting is non-
trivial for the following reasons. First, low iteration efficiency. Existing matting
models, to take into account both the specific matting feature and low-level in-
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formation, usually adopt a tightly coupled network design with specific feature
encoders that are bulky in terms of computational overhead. This will lead to re-
dundant calculations while receiving original-sized images (resolution above 2K
to ensure clarity) during inference. This difficulty will be further exacerbated
by the direct introduction of such a matting model into the iterative process.
Second, the performance decline caused by the sampling drift [12]. Due to the
recursive nature of the diffusion process, the flawed alpha matte will form the
guidance for the next prediction during inference, which deviates from the train-
ing samples generated using the ground truth alpha matte. This problem is
prominent in matting tasks because the prediction of the alpha matte requires
faithful utilization of pixel-level information and demands high accuracy.

To address the challenges that arise when adapting the diffusion process
to matting models, we propose the DiffMatte in this paper. Specifically, to re-
duce the high computational overhead, DiffMatte decouples the image encoder
and decoder. As shown in Fig.1, unlike past tightly-coupled matting predictors,
diffusion decoder D only receives the top-level features of arbitrary matting en-
coder B without shortcut connections. During the reverse process of inference,
only the lightweight D performs iteratively, and B acts only once to generate
high-dimensional context knowledge, which brings the benefit of a significant
reduction in computational overhead. To tackle the sampling drift, DiffMatte
includes a modified self-aligned strategy in the later stages of training. We add
noise to the alpha matte predicted by the model as a guide to align the samples
during training. This helps the model adapt to errors in previous predictions
and correctly trade off the prior information for prediction in the current step.
Furthermore, our strategy can handle the cumulative effect caused by multi-step
errors and maintain stable performance gains during the iteration process.

We perform extensive experiments on a series of composited image matting
benchmarks [55,65,72] and in-the-wild benchmark AIM-500 [41] to validate our
DiffMatte. When adapted to various matting encoders, DiffMatte outperforms
the respective baseline methods on Composition-1k, with the adaptation using
ViT-B as the encoder outperforming the previous best method by 8% on the
SAD metric (18.63) and by 15% on the MSE metric (2.54). DiffMatte also
obtains higher accuracy when generalizing to AIM-500 test sets (SAD 16.31,
MSE 3.3), demonstrating the superior in-the-wild ability of our method.

2 Related Work

Natural Image Matting. Traditional methods are mainly divided into sampling-
based [9,17,21,60,69] and propagation-based methods [3,22,37–39,64], according
to the way they make use of color features. These approaches lack the use of con-
text and prone to producing artifacts. Benefiting from the rapid development of
deep learning, learning-based methods can access high-level semantic informa-
tion with the help of neural networks. [10, 43, 45, 46] design learnable modules
to exploit contextual knowledge, and [11,16,54,74,76] introduces stronger back-
bones [14, 23, 48, 71] to improve matting accuracy. These methods have made
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significant progress, but lack exploration of low-level texture features. This leads
to matting models relying on shortcut connections to provide low-level features
in the one-piece UNet-like structure. In contrast to the above, [74] proposes a
decoder decoupled architecture to utilize a non-hierarchical backbone network
ViT, indicating the unnecessity of previous coupled network design. [40, 75] in-
corporate [33] to extend matting to any instances.
Diffusion Models. Diffusion models have achieved significant breakthroughs
in various modal generation tasks, owing to their delicate denoising processes.
Denoising diffusion probabilistic models (DDPM) [25] accomplish the inverse
diffusion process by training a noise predictor for fine-grained image generation.
Denoising diffusion implicit models (DDIM) [62] use non-Markovian processes
to speed up sampling. After some successful attempts [51, 57] to fuse textual
information, a group of generative large models [53,56] have achieved surprising
results with wide applications in image editing [18,47,73]. Diffusion models have
also been studied for the generation of a wide range of modalities, including
video [24,26,31,68], audio [29,34,35], biomedical image [59,67] and text [19,42].
Diffusion models for perception tasks. Diffusion methods attract exten-
sive research interest due to the success of diffusion modeling in the generative
field. Since the pioneering work [1] introduced diffusion methods to solve im-
age segmentation, follow-up researchers use diffusion to attempt their respective
tasks. [4] formulates object detection as a denoising process. [58] involves a dif-
fusion pipeline into depth estimation approach. [20], [6], and [36] apply diffusion
to instance segmentation, panoptic segmentation, and semantic segmentation re-
spectively, where the diffusion denoising training technique used by Pix2Seq [6] is
utilized by DDP [30] to solve diversified dense prediction tasks. These works have
achieved good performance by introducing the diffusion process, but [4,30,58] ob-
serve that the performance decreases as the step increases, and this phenomenon
is exacerbated on dense prediction tasks with high accuracy demand.

3 DiffMatte

3.1 Constructing DiffMatte Framework

In this section, we introduce our iterative matting framework with the task-
specific diffusion process. Each step of DiffMatte’s prediction is based on the
fixed image and trimap c = Concat(Image, Trimap), and accepts noise sample
X as additional guidance. The iteration process starts with pure Gaussian noise
and ends up converging to a clean alpha matte. This gradual change enables the
model to balance the guidance of c and X during the process.
DiffMatte Framework. To iteratively refine the alpha matte, we carefully
design DiffMatte’s framework. The key point of this framework is the diffusion
decoder D, which is the only unit of the iterative process. D receives Xt at
each step t as an additional pixel-level prior. This prior information needs to be
fused with the matting features provided by the matte encoder B to generate
the alpha matte prediction of the current step. We design D as a symmetric
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Fig. 2: Proposed DiffMatte Framework. DiffMatte provides noise sample X for
training through the forward diffusion process q, and uses X as an iterative prior to
supplement the guidance of c in the reverse process pθ. Diffusion decoder D serves
as an iterative component and is independent of matting encoderB, receiving matting
features F to predict the alpha matte at each step. As a universal decoder, it can
cooperate with any matting encoder. D consists of Down-Block and Up-Block, which
only contain convolutional layers and linear layers to process image information and
time embedding τ respectively.

UNet-like network to complete this process. This iterative D can cooperate with
any matting encoder B, forming a general matting architecture.
Providing Training Samples through Forward Process. Different from
the previous one-step matting method, DiffMatte needs to obtain noise samples
during training for each iteration, which is completed through the forward pro-
cess in the diffusion method. We adopt the following equation [5] to define the
forward process:

Xt ∼ q(Xt|X0) =
√
γt(bX0) +

√
1− γtϵ (2)

where γt ∈ (0, 1) is a mapping of t through the noisy schedule and represents
the noise intensity. X0 indicates the ideal clean sample of alpha matte. ϵ is a
standard Gaussian noise. In the previous research, three noisy schedules are
set up for image generation but also work for perception tasks, namely linear
schedule [5,25], cosine schedule [52], and sigmoid schedule [28]. Our experiments
show that simple linear schedules are more suitable for matting. b ∈ (0, 1] denotes
the input scaling factor, which amplifies the noises. A smaller b will bring more
destruction of detailed information at the same γt, which can be interpreted as
an increase to the signal-to-noise ratio (SNR) [5, 6].

In the current phase of training, we sample a single time step t from a uniform
distribution U(0, 1) following the continuous time training paradigm [7,32], and
noise X0 to Xt for an iteration training according to Eq. 2.
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Table 1: Computational overhead and running time. We use an image with a
resolution of 2048 × 2048 as input, with computational overhead in TFLOPs. SAD1

indicates one-step prediction results on Composition-1k benchmark. first and sub
represents the computation and time consumption generated by the first step and
subsequent iterations respectively.

Models TFLOPsfirst TFLOPssub Timesfirst Timessub SAD1

GCA [43] 2.09 - 357ms - 35.3
DiffMatte-Res34 1.12 0.86 24%↓ 156ms 82ms 47%↓ 31.3
ViTMatte-S [74] 1.69 - 617ms - 21.46
DiffMatte-ViTS 2.08 0.82 60%↓ 578ms 126ms 78%↓ 20.61

Iterative Prediction in Reverse Process. Given the noisy sample Xt, Diff-
Matte obtains the denoised sample Xt−1 through estimating µt−1 = X̂0|t with
trained fθ. After that a sampling technique proposed by DDIM [62] is used to
sample Xt−1, which can be defined as:

Xt−1 ∼ N (Xt−1;
√
γt−1µt−1, (1− γt−1)I) (3)

Combining the estimation of µt−1 and DDIM sampling, we get one iteration of
the reverse process:

pθ(Xt−1|Xt, c) = N (Xt−1;
√
γt−1fθ(Xt, t, c), (1− γt−1)I) (4)

The complete reverse process starts with a standard Gaussian noise XT and
passes through T -step iteration to get the final estimation X̂0. During inference,
as the time step goes from T to 0, the value of γt is mapped from 1 to 0 via the
noisy function. Thus XT ∼ N (0, I), which is consistent with ϵ at the beginning
time step T .

3.2 Iterative Refinement

Efficiency. The network designed for the matting task is usually a tightly cou-
pled one-piece structure [10,11,27,43], joining the entire network to the iterative
diffusion process without modification leads to excessive computational over-
head. Inspired by structural designs of [74], we decouple the network into sep-
arate matting encoder B and iterative diffusion decoder D, and the connection
between the two is limited to the top-level context feature of B. We implement
the DiffMatte model fθ as:

F = B(c)
fθ(Xt, t, c) = D(cat(Xt, c), t, F ) = µt−1

(5)

As shown in Figure 2, B encodes the image with the information of trimap
to get the context knowledge F , which will be reused in the reverse process. D
is iteratively performed in the diffusion process, and its lightweight structure
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prevents excessive computational overheads. We construct the decoupled diffu-
sion decoder D with Down-Block and Up-Block. They are essentially residual
convolution modules that incorporate time step information τ encoded by linear
mapping of time step t. Each module contains only 3 convolutional layers and
a linear layer encoding temporal embedding. It uses only one pair of blocks per
feature resolution instead of repeated stacking, making it very lightweight and
fast (5.3M parameters and 126ms running time). More network details can be
found in the appendix.
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Fig. 3: Comparison of different training
strategies. In contrast to the strategy pro-
posed by [30], we take into account the
drift caused by prediction errors at each
time step and propose a self-aligned strat-
egy with uniform time intervals to align
the noisy sample X over all time steps.

In this way, the diffusion process
can be smoothly implemented using the
lightweight diffusion decoder, and the
heavy encoder only propagates once
to avoid computational redundancy. As
shown in Table 1, with this lightweight
design, DiffMatte can save 24% of the
computational overhead and 47% of the
inference time in each subsequent itera-
tion when using the ResNet34 encoder,
and can save up to 60% of the compu-
tational overhead and 78% of the in-
ference time when using the ViTS en-
coder. Compared to directly using the
entire matting network for iteration,
DiffMatte utilizes computing resources
more efficiently and significantly reduces inference time.
Self-aligned Strategy with Uniform Time Intervals. The iterative process
provided by the diffusion method is supposed to acquire performance gains with
the step growth, but the results abnormally exhibit a continuous performance
degradation (the evidence is displayed in Tab.5). This phenomenon can also be
found in perceptual methods that introduce diffusion processes [4, 30,58].

We attribute this phenomenon to the inconsistency of noise samples between
training and inference. If only X formed by ground-truth alpha matte is used for
guidance during training, the model will not be able to adapt to error-containing
X during inference. Especially with the recursive nature of the iterative manner,
errors in X will accumulate, exacerbating the loss of performance. This view is
similarly mentioned in DDP [30], but the solution it proposes is limited as the
ignorance of the accumulation of errors that occurs during the iterative process.

We propose a more refined strategy that can effectively correct this distri-
bution variance by converting sampling targets to time intervals, obtaining a
self-aligned strategy with Uniform Time Intervals (UTI). As shown in Fig.3,
we sample a time interval δ ∈ U(0, T ), which acts on the training time step
t ∈ U(0, T − δ) to obtain t́ = t + δ. In the subsequent procedures, we use an
additional forward process q(Xt́|X0) to calculate the previous step noise sam-
ple instead of using white noise like [30]. After that, we obtain the estimation
X̂0|t+δ of the current sample X

′

t+δ over X0 by a frozen diffusion model fθ. After
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replacing X0 with X̂0|t+δ we perform a regular training iteration. The use of
Xt́ helps the model to complete the alignment of the data distribution over the
entire time domain and mitigate the accumulation of errors. Once δ takes the
value of 0, our method reverts to regular training, while when δ takes the value
of T − t it becomes the case used by [30]. We add our UTI self-aligned strategy
after fθ is well-trained to prevent serious errors in estimation X̂0|t́ from causing
the training failure.

Algorithm 1: DiffMatte Training

def train(cond , pha , flag , b):
""" cond: [B, 4, H, W], pha: [B, 1, H, W] """
""" flag: self -align entry , b: input scale """
feat = mat_encoder(cond) # encode condition
pha = (pha * 2) - 1 # normalize
# forward process
t, eps = uniform(0, 1), normal(0, 1)
if flag == True:

Xt = self_align(t, eps) # get aligned sample
else:

gamma = noisy_func(t)
Xt = sqrt(gamma) * pha + sqrt(1-gamma) * eps

# predict and backward
X0 = diff_decoder(Xt , cond , feat , t)
X0 = (X0 + 1) / 2
loss = Losses(X0, pha)
return loss

Algorithm 2: DiffMatte Inference

def inference(cond , T, b):
""" cond: [B, 4, H, W], T: sampling steps """
""" b: input scale """
feat = mat_encoder(cond) # encode condition
Xt = normal(0, 1) # noisy map of [B, 1, H, W]
time_pairs = sample_timesteps(T)
# reverse process
for t, t_next in time_pairs:

gamma , gamma_next = noisy_func(t, t_next)
# normalize X_t by variance
Xt = Xt / std(Xt)
# predict X0
X0 = diff_decoder(Xt , cond , feat , t)
X0 = (X0 * 2) - 1 # normalize
Xt = DDIM(X0 , gamma , gamma_next , b)

Xpred = Xt / b # rescaling
return [Xpred + 1] / 2 # denormalize

3.3 Training and Inference.

Our training and inference algorithms are shown in Algorithm 1 and Algorithm
2. Our approach requires a selected noise schedule as well as input scaling, both
of which parameterize the corresponding noise distribution, leading to different
diffusion processes. DiffMatte involves the timing of the start of the UTI self-
aligned strategy during training. We train to the 90th epoch to add it and
continue until the end of training. At training time our fθ is supervised with the
task-specific losses following the common practices [4, 6, 30]:

L = Et∼U(1,T ),Xt∼q(Xt|X0,I)Lmat(fθ(Xt, t, c), X0) (6)

specifically using the combined matting loss with separate l1 loss [74], l2
loss, laplacian loss [27], and gradient penalty loss. We end up with the following
objective:

Lmat = Lsp l1 + Ll2 + Llap + Lgrad (7)

Thanks to continuous-time training, we are free to set the total number
of iterations T during inference. As demonstrated in Fig.5, an increase in the
number of sample steps from 1 to 10 is accompanied by an improvement in the
accuracy of the final prediction.

4 Experiments

4.1 Datasets and Evaluation.

Adobe Image Matting [72]. This dataset contains 431 unique training fore-
ground images and 50 extra foregrounds for evaluation. The training set is con-
structed by compositing each foreground with 100 background images from the
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COCO dataset [44]. Similarly, the validation set named Composition-1k is ob-
tained by compositing 50 test foreground images with 20 background images
from VOC2012 [15] to get a total of 1000 test images.

Table 2: Quantitative results on Composition-1k
[72]. † indicates using the perturbation mask as guid-
ance. The best results are shown in bold. S1 and S10
denote 1 and 10 steps refinement.

Methods SAD MSE(103) Grad Conn
DIM [72] 50.4 14.0 31.0 50.8
IndexNet [49] 45.8 13.0 25.9 43.7
SampleNet [66] 40.4 9.9 - -
Context-Aware [27] 35.8 8.2 17.3 33.2
A2U [10] 32.2 8.2 16.4 29.3
MG† [77] 31.5 6.8 13.5 27.3
SIM [65] 28.0 5.8 10.8 24.8
FBA [16] 25.8 5.2 10.6 20.8
TransMatting [2] 24.96 4.58 9.72 20.16
RMat [11] 22.87 3.9 7.74 17.84
GCA [43] 35.3 9.1 16.9 32.5
DiffMatte-Res34 (S1) 31.28 6.38 11.60 28.07
DiffMatte-Res34 (S10) 29.20 6.04 11.3125.48
Matteformer [54] 23.80 4.03 8.68 18.90
DiffMatte-SwinT (S1) 22.05 3.54 6.67 17.03
DiffMatte-SwinT (S10)20.87 3.23 6.37 15.84
ViTMatte-S [74] 21.46 3.3 7.24 16.21
DiffMatte-ViTS (S1) 20.61 3.08 7.14 14.98
DiffMatte-ViTS (S10) 20.52 3.06 7.05 14.85
ViTMatte-B [74] 20.33 3.0 6.74 14.78
DiffMatte-ViTB (S1) 18.84 2.56 5.86 13.23
DiffMatte-ViTB (S10) 18.63 2.54 5.82 13.10

Generalization. We use the
test sets of Distinctions-646
[55] (hereinafter D646) and
Semantic Image Matting [65]
(hereinafter SIMD) to ver-
ify the generalization perfor-
mance of DiffMatte. D646
and SIMD contain 50 and 39
test foregrounds respectively,
which are composited with
the background in Pascol-
VOC to obtain test images.
SIMD provides the trimap
of the foreground, while the
trimap of D646 needs to be
generated by ourselves.
AIM-500 [41]. AIM-500 is
the most comprehensive real
image test set among the nat-
ural image matting bench-
marks. It contains 500 real
images with official trimap
and detailed alpha matte an-
notations. We choose AIM-
500 to evaluate DiffMatte’s
in-the-wild performance.

We train our model on the
Adobe Image Matting training set and perform inference on three composite im-
age test sets to validate the matting performance as well as the generalization.
We additionally use the training set in D646 for DiffMatte training of the ViT
series and verify it on real-world images. The reason for using the D646 training
set is that it has a wider data domain, containing more natural categories in-
cluding flames and liquids. We use 4 common metrics to evaluate our DiffMatte:
Sum of Absolute Differences (SAD), Mean Square Error (MSE), Gradient loss
(Grad), and Connectivity loss (Conn). A lower value indicates better quality.

4.2 Main Results

In this section, We deploy DiffMatte’s general decoder on four popular matting
encoders [43, 54, 75] and present our quantitative and qualitative comparison
results with previous methods on various benchmarks. Then we discuss the per-
formance improvements brought by DiffMatte’s unique iteration manner.
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Fig. 4: Qualitative results compared with previous SOTA methods on Composition-1k.
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Results on Composition-1k. The quanti-
tative results on Composition-1k are shown
in Tab.2. With the ViT-B encoder, one-
step DiffMatte achieves the best matting
accuracy, improving the SAD metric by
1.49 (+7.3%) and the MSE metric by
0.44 (+14.7%) compared with the previous
SOTA method . Fig.5 shows the refining
process of each step on the Composition-1k
with different matting encoders. The over-
all results improve as the number of itera-
tion steps increases. Variants with Swin Tiny
and ResNet-34 encoders enjoy more signif-
icant improvement. We will further explain
this phenomenon in the following subsection.
Fig.4 qualitatively comparing our approach
to previous SOTA methods, represents the better performance in the challenging
local regions, demonstrating the superiority of DiffMatte.
Generalization on D646 and SIMD. The quantitative results on the D646
and SIMD test sets are shown in Tab.3. All baselines use the official weights
trained on the Adobe Image Matting training set to test generalizability. The
results indicate that DiffMatte outperforms the competitors on both the D646
and SIMD test sets. Notably, DiffMatte based on the ViT backbone shows a trend
of performance degradation with increasing time steps on the D646 test set. We
speculate that this is due to the low feature resolution provided by ViT (16x
downsampling), resulting in a shallow supporting decoder that is insufficient for
handling the D646 test set, which significantly differs from the training domain.
We additionally trained the ViTS and ViTB models on the D646 training set,
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Table 3: Quantitative results on D646 [55] and SIMD [65]. All methods are trained
only on the Adobe Image Matting dataset. S1 and S10 denote 1 and 10 steps refinement.

Dataset Distinctions-646 Semantic Image Matting Dataset
Params

Method SAD MSE Grad Conn SAD MSE Grad Conn

GCA [43] 35.33 18.4 28.78 34.29 68.23 25.74 33.19 67.67 25.3M

DiffMatte-Res34 (S1) 31.53 11.87 17.52 30.86 51.49 14.10 18.32 48.70

DiffMatte-Res34 (S10) 29.38 11.31 16.19 28.26 47.75 14.10 17.19 44.53
23.9M

Matteformer [54] 23.90 8.16 12.65 18.90 29.66 5.91 12.52 24.19 48.8M

DiffMatte-SwinT (S1) 23.46 6.71 10.20 21.23 30.26 5.64 9.45 24.64

DiffMatte-SwinT (S10) 23.17 6.58 10.04 20.03 27.51 5.20 9.12 22.04
38.8M

ViTMatte-S [74] 23.18 7.14 13.97 19.65 27.96 5.02 10.68 22.38 25.8M

DiffMatte-ViTS (S1) 22.56 7.09 13.21 19.23 27.55 4.78 10.26 21.24

DiffMatte-ViTS (S10) 22.96 7.22 13.06 19.66 27.38 4.71 10.31 21.03
29.0M

ViTMatte-B [74] 20.36 5.58 9.34 17.19 27.15 5.45 9.67 21.51 96.7M

DiffMatte-ViTB (S1) 19.07 5.23 9.26 15.99 26.83 4.92 8.26 20.72

DiffMatte-ViTB (S10) 19.19 5.34 9.26 16.17 25.60 4.69 8.20 19.84
101.4M

and both recovered their refinement capabilities after training on a larger data
domain. (Results shown in the Appendix)

Table 4: Quantitative results on AIM-500 [41]. ‡

indicates training on Distinctions-646. The best re-
sults are shown in bold. S1 and S10 denote 1 and 10
steps refinement.

Methods SAD MSE(103) Grad Conn
ViTMatte-B [74] 17.93 1.88 15.52 17.2
DiffMatte-ViTB (S1) 22.32 1.9 14.63 22
DiffMatte-ViTB (S10) 23.57 2.14 14.58 23.23
DiffMatte-ViTB‡ (S1) 17.06 1.73 15.39 16.87
DiffMatte-ViTB‡ (S10)16.73 1.7 14.78 16.35

Results on AIM-500. We
compare the results of train-
ing on the Adobe Image
Matting training set and
Distinction-646 training set
based on ViT-B encoder with
the previous strongest model,
ViTMatte, on the in-the-wild
benchmark AIM-500. The re-
sults are shown in the Tab.4 .
We still provide the results of
running one step and iterating ten steps respectively. We find that the effect of
DiffMatte in Distinction-646 training is significantly better than Adobe Image
Matting, and the effect will not deteriorate with iteration. This phenomenon
shows that training on synthetic images using a wider data domain can help
improve DiffMatte’s generalization ability in the real world. DiffMatte’s perfor-
mance is better than ViTMatte in all four metrics, reflecting its effectiveness on
real images. We further provide visualization results in Fig.6, from which we can
see the quality improvements through multi-step iteration.

4.3 Discussion

Promising one-step results. When DiffMatte is applied to various matting
encoders, its initial predictions outperform the corresponding baselines. This
result is surprising, as the model uses only white noise as guidance in the first
step, similar to one-step methods. We attribute this improvement to our UTI
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Image Trimap ViTMatte Ours Step1 Ours Step10

Fig. 6: We select examples to represent three difficult natural image matting scenar-
ios. The first row is the scene with complex foregrounds containing fully transparent
objects. The second row is a scene with a complex background, including strong light
and blur. The third row is the scene with only a rough trimap for guidance.

training strategy. By forcing the model to overcome the errors in the guidance,
the model undergoes more thorough training.

Performance gain with iteration. The results in 4.2 demonstrate that Diff-
Matte can progressively enhance the alpha matte. As shown in Fig.7, by exam-
ining the results of each iteration, we believe DiffMatte achieves this by focusing
on error-intensive areas in the predictions. Although noise samples do not
explicitly guide the model to optimize specific areas, DiffMatte’s iterative pro-
cess allows the model to autonomously correct errors. Consequently, DiffMatte
helps improve performance on weaker encoders like ResNet-34 and Swin-Tiny.
For stronger encoders in the ViT series, the performance gains from local error
correction are averaged across the test set, thus less noticeable in the curve.

TrimapImage Step 1 Step 4 Step 7 Ground TruthStep10

Patch SAD: 11.1

Image SAD: 29.0

Patch SAD: 3.1

Image SAD: 21.5

Patch SAD: 2.7

Image SAD: 21.3

Patch SAD: 2.1

Image SAD: 21.1

Patch SAD: 19.2 Patch SAD: 9.8 Patch SAD: 8.9 Patch SAD: 7.6

Image SAD: 53.5 Image SAD: 39.3 Image SAD: 38.2 Image SAD: 37.3

Fig. 7: Visualization of the iterative refinement. DiffMatte tends to correct error-
intensive local areas. Patch indicates the area within the red box.
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Table 5: Ablation on the role of noises and self-aligned strategy. iter denotes the
iterative modification. i in SADi/MSEi represents the number of iteration steps. The
original Self-aligned shows performance degradation after 10 steps.

Method SAD1/MSE1 SAD5/MSE5 SAD10/MSE10 SAD15/MSE15

ViTMatte [74] 21.46/3.30 -/- -/- -/-

ViTMatteiter 23.87/4.21 24.19/4.38 24.84/4.79 25.12/5.08

Diffusion

w\o Self-aligned 21.05/3.16 22.51/3.37 23.04/4.07 23.68/4.21

Self-aligned [30] 21.11/3.21 21.08/3.17 21.04/3.19 21.06/3.22

UTI Self-aligned 20.61/3.08 20.54/3.07 20.52/3.06 20.50/3.04

4.4 Ablation Study

We first perform ablation experiments on our denoising diffusion approach on
the Composition-1k test set. All models are trained using ViT-S as the encoder.
Effect of Diffusion Process. We ablate the noises in our diffusion framework
to explore its effects. We first remove the noise term of DiffMatte, i.e., ϵ in the
Eq.2, and predict alpha matte starting from an empty image during inference.
This practice makes the model overly dependent on the direct guidance of clean
alpha matte, causing catastrophic inference failures that cannot be fixed even
with self-aligned training. We also try to fix this issue with iterative training
on the existing one-step matting method. We modified ViTMatte to accept an
additional 1-channel alpha matte and constrained two consecutive predictions
during retraining, using an empty image and the first prediction for guidance.
The results in the second row of Tab.5 show that iterative ViTMatte is still
affected by errors in previous predictions, leading to performance degradation.
Additionally, the first step results are weaker than the non-iterative manner,
likely due to the large gap in guidance information. In summary, noise in iterative
matting disrupts previous predictions and prevents over-reliance, allowing the
model to correct errors through denoising and improving matting quality.
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Fig. 8: Performance gain compared
with no self-aligned adopted.

Effect of Self-aligned Strategies. As
shown in Tab.5, the matting performance
will gradually decrease without using any
self-aligned strategy. This phenomenon has
been explained in Sec.3.2. When using the
self-aligned strategy, our UTI has higher
single-step performance and more sustained
iterative improvement compared with the
approach proposed in [30]. This is because
the noise samples provided by UTI are more
abundant, allowing the model to cope with different levels of errors, and thus
better adapt the guidance provided by the noise samples. Fig.8 intuitively shows
the improvement brought by the self-aligned strategy and the superiority of UTI.
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Table 6: Ablation experiments with ViT-S [74] on Composition-1k test set [72]. We
report the performance with 10 steps. Default settings are marked in gray.

Noise Schedule SAD MSE
sigmoid 21.46 3.31
cosine 21.58 3.35
linear 20.52 3.06

(a) Noise Schedule. We
find linear schedule works
best for matting task.

Input Scaling SAD MSE
0.05 21.0 3.32
0.1 21.30 3.24
0.2 20.52 3.06
0.5 20.88 3.24
1.0 22.19 3.75

(b) Input Scaling. The
best input scaling factor for
DiffMatte is 0.2.

Nd SAD MSE Params TFLOPs
16 21.63 3.55 1.9M 0.2
24 21.23 3.27 3.4M 0.5
32 20.52 3.06 5.3M 0.8
48 20.29 3.05 10.0M 1.8

(c) Diffusion Decoder Chan-
nels. Nd set to 32 can best balance
the parameters and performance.

Effect of Noisy Schedule. We study the effect of the noisy schedule in Tab.7a
and observe that the linear schedule is best suited for matting tasks compared to
cosine and sigmoid schedules. This conclusion differs from the practice of diffu-
sion methods on generative [5] and other vision tasks [30]. This may attributed
to the need for fine area guidance, as the linear schedule’s relatively stable SNR
variation ratio facilitates the model for detail perception.
Effect of Input Scaling. We conduct the ablations on the input scaling and
the results are shown in Tab.7b. As the factor decreases from 1 to 0.01, the
performance of DiffMatte shows a trend of first increasing and then decreasing,
finally reaching the optimum at 0.2. We believe that appropriately reducing the
scaling factor can increase the difficulty of the model extracting information
from noisy samples and help the model learning. However, a large scaling factor
destroys too much information and reduces performance.
Effect of Diffusion Decoder Channels. As shown in Tab.7c, we study the
role of the number of decoder channels Nd. The hyperparameter Nd, which
controls the number of Cout channels of the convolutional layer in Up-Block and
Down-Block pairs, can be varied to meet accuracy or recourses requirements.
As Nd increases, the matting accuracy of the model will be improved, but the
number of parameters and computational overhead will also increase. We find
that when Nd is set to 32, it can best balance the performance and costs.

5 Conclusion

In this paper, we proposes an iterative natural image matting framework by in-
troducing the denoising diffusion process. Our DiffMatte achieves new state-of-
the-art performances on the Composition-1k, and beats the corresponding base-
line on the generalization test and AIM-500 benchmark. By iteratively revising
alpha matte, DiffMatte can improve prediction quality with low computational
overhead and running time. This contributes to our decoupled decoder design
and UTI self-aligned training strategy. We hope that DiffMatte can promote re-
search on interactive matting and lead to practical image editing applications.
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