
Semicalibrated Relative Pose from an Affine
Correspondence and Monodepth

Petr Hruby1 , Marc Pollefeys1,2 , and Daniel Barath1

1 ETH Zürich, Switzerland
2 Microsoft

f1 f2

X

∂X
∂u

∂X
∂v

λ1

∂u λ1 +
∂λ1
∂u

∂v

λ1 +
∂λ1
∂v

λ2

a1
a2

λ2 +∇λ2a2

Fig. 1: Illustration of the problem. The notation is given in Sec. 2.1. Perturbing the
observation x in the first camera in direction m will lead to the same change of 3D
point X, as perturbing the observation in the second camera in direction Am. This
relationship enables us to estimate the focal length and the relative pose of the cameras.

Abstract. We address the semi-calibrated relative pose estimation prob-
lem where we assume the principal point to be located in the cen-
ter of the image and estimate the focal lengths, relative rotation, and
translation of two cameras. We introduce the first minimal solver that
requires only a single affine correspondence in conjunction with pre-
dicted monocular depth. Recognizing its degeneracy when the corre-
spondence stems from a fronto-parallel plane, we present an alternative
solver adept at automatically recovering the correct solution under such
circumstances. By integrating these methods within the GC-RANSAC
framework, we show they surpass standard approaches, delivering more
accurate poses and focal lengths at comparable runtimes across large-
scale, publicly available indoor and outdoor datasets. The code is avail-
able at https://github.com/petrhruby97/semicalibrated_1AC_D.
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1 Introduction

Estimating the relative pose between two cameras is a fundamental task in com-
puter vision [32, 38, 43, 54, 68, 69] and robotics, with applications in 3D recon-
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struction [1,9,33,66,67,71], visual localization [20,21,24,53], simultaneous local-
ization and mapping (SLAM) [45,57,64,65], multi-view stereo [16,26,27,36], and
visual odometry [55, 56]. In this paper, we focus on the semi-calibrated relative
pose, when the focal lengths of the cameras are unknown, while the principal
point is considered to be in the center of the images. This is an important task,
since estimating focal length is challenging and tends to be inaccurate even
when available in the EXIF tag [66]. On the other hand, assuming the principal
point at the image center usually works well, even for cropped images, since
the principal point can be recovered with bundle adjustment (BA). Note that
the semi-calibrated setting is important in various applications such as absolute
pose [14,39], relative pose [41,42], and vanishing point estimation [58]. Following
prior work [7, 17, 31], we assume no camera distortion. In practice, this usually
is a reasonable assumption, and a subsequent numerical optimization procedure
estimates the distortion parameters. We use an affine correspondence [50] with a
pre-trained relative (non-metric) monocular depth predictor [60,61] to estimate
the semi-calibrated pose from a single correspondence.

Solvers for estimating relative pose, commonly deployed within a RANSAC
framework [25], are indispensable for achieving accurate results, especially when
tackling the inherent noise and outliers in real-world data. The size of the min-
imal sample used for estimating the pose directly correlates with the problem
complexity. In RANSAC, the runtime grows exponentially with the sample size,
making methods that use fewer data points highly preferred. A special category
of solvers is those that require a single correspondence. Their main advantage
is that they can replace random sampling with exhaustive search, rendering the
process deterministic. However, to solve a problem from a single data point, it
must be equipped with rich information about the underlying scene geometry,
or we need to make assumptions about the camera motion to reduce its degrees
of freedom (DoF). Recognizing this, various single-point solvers for calibrated
relative pose have been proposed, combining an affine correspondence (AC) with
additional information, such as planar motion assumption [30], known vertical
direction [29], and monocular depth [22].

Affine correspondences (AC) are a potent tool for relative pose estimation [48,
50–52]. Their appeal stems from the ability to reduce the sample size by imposing
additional constraints. Early works like [17,59] introduced approximate solutions
for uncalibrated and calibrated scenarios, leveraging 3 and 2 ACs, respectively.
The constraints allowing direct use of ACs for relative pose estimation were
studied in [10, 13], leading to exact solvers [6, 62]. In [5, 37], 2 ACs are used
to find the unknown homography. A solution for relative pose between central
cameras from 2 ACs was given in [23]. While there are solvers that marry a single
AC to constraints such as the planar motion assumption [30], known vertical
direction [29], or monocular depth [22], a notable gap persists: the absence of a
single-correspondence solver tailored for scenarios with unknown focal lengths.

In this paper, we introduce two solvers tailored for semi-calibrated relative
pose estimation, both of which harness a single affine correspondence and pre-
dicted monocular depth. The first method estimates the relative pose from a
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single AC. Recognizing its degeneracy when the correspondence stems from a
fronto-parallel plane, the other solver recovers the correct solution. Incorporat-
ing these solvers within the state-of-the-art Graph-Cut RANSAC framework [8]
leads to more accurate results than the widely used methods both on out-
door [28,34] and indoor [19] datasets.
To summarize, our contributions are the following:

– We propose the first minimal solver for semi-calibrated relative pose estima-
tion from a single affine correspondence and monocular depth.

– We propose another solver applied to the same input as the first one when
it can only estimate the camera rotation due to degeneracies in the data.

2 Minimal Solvers

In this section, we will first discuss the theoretical background. Then two mini-
mal solvers will be proposed. The first one estimates the relative pose and focal
lengths from a single affine correspondence and monocular depth. The second one
is run when the first solver fails due to degeneracies in the data. It samples an ad-
ditional correspondence via an exhaustive search approach to recover the model.

2.1 Notation and concepts

Let X ∈ R3 be a 3D point, and P ∈ R3,4 a matrix representing a pinhole
camera. We can decompose P = K [Rt], where K ∈ R3 is the intrinsics matrix,
R ∈ SO(3), t ∈ R3 is the pose of the camera P. Here, we assume the semi-
calibrated setting with square pixels and a known principal point. Then, K has
the following form:

K =

f 0 0
0 f 0
0 0 1

 , (1)

where f is the focal length of the camera.
Let x ∈ R3, x = [u v 1]T be the homogeneous representation of the projection

of X into P. Then, there holds:

x ∼ P[XT1]T = K(RX+ t), K−1x ∼ RX+ t. (2)

Let λ ∈ R be the distance between point X, and the center of camera P. Then,
we can rewrite the constraint as

λ
K−1x

∥K−1x∥
= RX+ t. (3)

The expression K−1x
∥K−1x∥ is the normalized bearing vector of a projection x. We

define a function q(u, v, f) = K−1x
∥K−1x∥ , which maps the image coordinates and



4 P. Hruby et al.

focal length bearing vectors as follows:

q(u, v, f) =
1√

u2 + v2 + f2

uv
f

 . (4)

Using this, we obtain the 3D point X as:

X = RT(λq(u, v, f)− t). (5)

Derivatives of the 3D point (5) with respect to the image coordinates describe
how the 3D point changes if we apply an infinitesimal perturbation to the image
coordinates. We calculate the derivatives as:

∂X

∂u
= RT

(
∂λ

∂u
q(u, v, f) + λ

∂q(u, v, f)

∂u

)
,

∂X

∂v
= RT

(
∂λ

∂v
q(u, v, f) + λ

∂q(u, v, f)

∂v

)
,

(6)

where
∂q(u, v, f)

∂u
=

1

(u2 + v2 + f2)
3
2

v2 + f2

−uv
−uf

 ,

∂q(u, v, f)

∂v
=

1

(u2 + v2 + f2)
3
2

 −uv
u2 + f2

−vf

 .

We use the compact notation as follows:

∇X =

[
∂X

∂u

∂X

∂v

]
, ∇λ =

[
∂λ

∂u

∂λ

∂v

]
, ∇q =

[
∂q(u, v, f)

∂u

∂q(u, v, f)

∂v

]
.

In order to get the derivative of point X in a general direction m ∈ R2, we have
the following formula:

∇Xm = RT (q(u, v, f)∇λm+ λ∇qm) . (7)

Note, that the derivative ∇Xm does not depend on t.
Two cameras. Let us have two cameras P1 = [I 0], P2 = [R t], and a 3D point
X. Let x1, x2 be the projections of X into both cameras, and let λ1, λ2 be the
relative depths of X in each camera. Then, there holds:

λ1Rq(u1, v1, f1) + t = λ2q(u2, v2, f2). (8)

Local affine frame (LAF) (x,A) consists of a projection x ∈ R3, and a linear
transformation A ∈ R2×2 describing the local coordinate system of the image
region. Two LAFs (x1,A1), (x2,A2) form an affine correspondence.

Since A = A2A
−1
1 represents the map that maps the infinitesimal vicinity

of x1 to that of x2, the infinitesimal perturbation of x1 in direction m, and the
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Fig. 2: Example images and their monocular depths by MiDaS-v3 [60, 61] from the
PhotoTourism [35] and ScanNet [19] datasets used in the real experiments.

infinitesimal perturbation of x2 in direction Am lead to the same change in
X [22]. For every m, there holds:

q(u1, v1, f1)∇λ1m+ λ1∇q(u1, v1, f1)m

= RT(q(u2, v2, f2)∇λ2Am+ λ2∇q(u2, v2, f2)Am).
(9)

Since this holds for every m, we get the constraints:

q(u1, v1, f1)∇λ1 + λ1∇q(u1, v1, f1)

= RT(q(u2, v2, f2)∇λ2A+ λ2∇q(u2, v2, f2)A).
(10)

Relative depth. Usually, we only know the depth in each image up to unknown
common scale α. Therefore, we obtain the following constraints:

λ1Rq(u1, v1, f1) + t = αλ2q(u2, v2, f2), (11)

q(u1, v1, f1)∇λ1 + λ1∇q(u1, v1, f1) =

αRT(q(u2, v2, f2)∇λ2A+ λ2∇q(u2, v2, f2)A).
(12)

The unknowns are the rotation R, t, focal lengths f1, f2, and the scale factor
α. There are 9 variables: 3 for R, 3 for t, 2 for (f1, f2), and 1 for α. Equations
(11), (12) together give 9 independent constraints. The problem is minimal.

2.2 Semi-calibrated Relative Pose (1AC+D)

Here, we describe how to solve for a semi-calibrated relative pose from a single
affine correspondence and monocular relative depth. We know a single affine cor-
respondence (x1,x2,A), relative depths λ1 of x1, λ2 of x2, and their derivatives
∇λ1,∇λ2. First, we find focal lengths f1, f2, scale factor α, and rotation R from
equation (12). Then, we use constraint (11) to find the translation.

Constraint (12) can be split into two constraints in the form
di(f1) = αRTei(f2), i ∈ {1, 2}, as follows:

d1(f1) = q(u1, v1, f1)
∂λ1

∂u1
+ λ1

∂q(u1, v1, f1)

∂u1
,

d2(f1) = q(u1, v1, f1)
∂λ1

∂v1
+ λ1

∂q(u1, v1, f1)

∂v1
,

e1(f2) = q(u2, v2, f2)∇λ2a1 + λ2∇qa1,

e2(f2) = q(u2, v2, f2)∇λ2a2 + λ2∇qa2,

(13)
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where a1, and a2 are the columns of matrix A.
Vectors di(f1), ei(f2) are only related by rotation and common scale. As a

result, the angles between d1(f1) and d2(f1), and between e1(f2) and e2(f2) are
equal. Additionally, the ratios of the norms of d1(f1) and d2(f1), and of e1(f2)
and e2(f2) are equal. These observations lead to the following equations:

d1(f1)
Td2(f1)

∥d1(f1)∥∥d2(f1)∥
=

e1(f2)
Te2(f2)

∥e1(f2)∥∥e2(f2)∥
,
∥d1(f1)∥
∥d2(f1)∥

=
∥e1(f2)∥
∥e2(f2)∥

. (14)

We get the first constraint by multiplying the left sides, and the right sides of
the equations in (14):

d1(f1)
Td2(f1)

d2(f1)Td2(f1)
=

e1(f2)
Te2(f2)

e2(f2)Te2(f2)
. (15)

If we multiply this with both denominators, we obtain:

(d1(f1)
Td2(f1))(e2(f2)

Te2(f2)) = (e1(f2)
Te2(f2))(d2(f1)

Td2(f1)). (16)

We get a second constraint by squaring the second equation of (14) and multi-
plying the result by both denominators as:

(d1(f1)
Td1(f1))(e2(f2)

Te2(f2)) = (e1(f2)
Te1(f2))(d2(f1)

Td2(f1)). (17)

Eqs. (16), and (17) build together a system of two independent polynomial equa-
tions in f1, f2. Since the variables appear in the system only with even exponents,
we first substitute g1 = f2

1 and g2 = f2
2 . We build a solver for this system with

an automatic Gröbner basis solver generator [40]. The system has 9 solutions in
terms of g1, g2, and the elimination template has 36 rows. The running time is
29µs. We use the solver to find g1, g2 and calculate

f1 =
√
g1, f2 =

√
g2, α =

∥d1(f1)∥
∥e1(f2)∥

.

Then, we find R as R = ED−1, where:

E =
[

e1(f2)
∥e1(f2)∥

e2(f2)
∥e2(f2)∥

e1(f2)×e2(f2)
∥e1(f2)×e2(f2)∥

]
, D =

[
d1(f1)

∥d1(f1)∥
d2(f1)

∥d2(f1)∥
d1(f1)×d2(f1)

∥d1(f1)×d2(f1)∥

]
,

and refine rotation R using SVD [2]. Finally, we calculate t from (11). Note, that
the overall scale is fixed by setting the scale of the first depth to one, instead of
the common choice |t| = 1. This solver works for generic camera configurations.
However, it is degenerate when the optical axes of the cameras are parallel and
orthogonal to the plane from which the used correspondence stems. We design
a solver for this situation in Sec. 2.3. In Sec. 2.4, we show how the two solvers
are used together in practice.
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2.3 Fronto-parallel Planes Solver (1AC+1PC)

Here, we are going to discuss the case, when the optical axes of the cameras
P1, P2 are parallel, and the plane containing point X is orthogonal to them.
This is a degenerate case of the problem solved in Sec. 2.2. A calibrated version
of this configuration was studied in [47] in the context of dense stereo recon-
struction. Since it is a common case in real-world scenarios [34], we present a
solution for it, which requires one affine correspondence (x1,x2,A), and one
point correspondence (y1,y2).

In this case, the views are related by homography H = K2(R−tnT)K−1
1 [46],

where n = [0 0 1]T, and R rotates around the z-axis. This homography is
proportional to:

H ∼

cosφ − sinφ −f1t1
sinφ cosφ −f1t2
0 0 f1

f2
(1− t3)

 , (18)

where φ is the angle of R, and t = [t1 t2 t3]. This homography is an affine
transformation, and, therefore, it can be obtained from the AC (x1,x2,A) as:

H =

[
A x2 −Ax1

oT 1

]
. (19)

Since matrices (18), (19) are proportional, we obtain the rotation as follows:

R =

[
A

detA o
oT 1

]
. (20)

Let b = (x2−Ax1)/detA, and let b1, b2 be the elements of b. Then, we express
the elements of t as follows:

t1 =
b1
f1

, t2 =
b2
f1

, t3 =
f2
f1

1

detA
− 1. (21)

The fundamental matrix is composed as F = K−T
2 [t]×RK−1

1 . There holds

F ∼

 − sinφt3 − cosφt3 f1t2
cosφt3 − sinφt3 −f1t1

f2(sinφt1 − cosφt2) f2(cosφt1 + sinφt2) 0

 . (22)

This becomes  −sφt3 −cφt3 f1t2
cφt3 −sφt3 −f1t1

f2(sφt1 − cφt2) f2(cφt1 + sφt2) 0

 , (23)

and then  sφ − f2
f1

sφ
detA −cφ + f2

f1

cφ
detA b2

cφ − f2
f1

cφ
detA sφ − f2

f1

sφ
detA −b1

f2
f1
(sφb1 − cφb2)

f2
f1
(cφb1 + sφb2) 0

 . (24)
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This can be split as:

F =

sφ −cφ b2
cφ sφ −b1
0 0 0

+
f2
f1

 − sφ
detA

cφ
detA 0

− cφ
detA − sφ

detA 0
sφb1 − cφb2 cφb1 + sφb2 0

 . (25)

This can be written in a compact form as F = F1 +
f2
f1
F2, where F1, F2 can be

fully determined from the affine correspondence (x1,x2,A).
Fundamental matrix F is therefore a function of the ratio f2

f1
. In order to

determine this ratio, we use an additional point correspondence (y1,y2), and
find the value of f2

f1
that satisfies yT

2 Fy1 = 0. This equation becomes yT
2 F1y1 +

f2
f1
yT
2 F2y1 = 0. Therefore, we can obtain the unique value of the ratio as:

f2
f1

= −yT
2 F1y1

yT
2 F2y1

(26)

We substitute this value into (25) to obtain the parameters of fundamental
matrix F. However, in this case it is not possible to decompose F to get the
translation and focal lengths. The reason for this is that, if R, t =

[
t1 t2 t3

]T ,
f1, f2 build a fundamental matrix F, then for every α ∈ R, R, t′ =

[
t1 t2 αt3

]T ,
f ′
1 = αf1, f ′

2 = αf2 build the same fundamental matrix F. Knowing the relative
depth, we can find the focal lengths f1, f2. The procedure leads to solving a
quadratic equation and it is described in the Supplementary material.

2.4 Combining the Solvers (1AC+D+)

Here, we describe how to combine the single-point solver (Sec. 2.2) with the solver
addressing the aforementioned degeneracy (Sec. 2.3). If the cameras and the
observed plane are in degenerate configuration, matrix 1

detAA is a rotation. In
that case, the eigenvalues of this matrix are equal to 1. We employ the following
procedure in order to detect degenerate cases after solver 1AC+D finished:

– Calculate eigenvalues λ1, λ2 of 1
detAA (λ1 ≥ λ2).

– If |λ1| ≤ ϵ, the configuration is labeled degenerate.

In case the configuration is not degenerate, the original 1AC+D solver returned
the correct solutions, and we have nothing to do. We can verify the relative
pose in the RANSAC procedure without additional steps. We use ϵ = 1.2 in all
experiments.

Otherwise, we run a model upgrade procedure similar to the DEGENSAC [18]
algorithm. Knowing the special scene configuration that caused solver 1AC+D
to fail, we can run an exhaustive search over the remaining correspondences and
use the solver from Sec. 2.3 to estimate the model given the already selected AC
and the new correspondence.

While the whole sampling process may be quadratic O(n2) in the number of
correspondences, our observations show that, in practice, the runtime is usually
linear.
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3 Experiments
In this section, we compare our 1AC+D (Sec. 2.2) and 1AC+1PC (Sec. 2.4)
solvers with the 6PC [42], 7PC [32], 3AC [11], 3PC-to-AC [17], 4SIFT [7], 5ORB
[4] methods both on synthetic and real-world data.
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Rotation stability

7PC 3AC AC-to-3PC 4SIFT
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1

1.5 ·104

log10 of translation error

Translation stability

10−15 10−7 101
0

0.5

1

1.5 ·104

log10 of focal error

Focal stability

Fig. 3: Stability study. Histogram of log10 left: rotation, middle: translation errors
in radians, and right: relative focal length errors of the poses estimated by the 6PC
[42], 7PC [32], 3AC [11], AC-to-3PC [17], 4SIFT [7], 5ORB [4], the proposed 1AC+D
(Sec. 2.2) and 1AC+1PC (Sec. 2.3) solvers, computed from 100k noiseless samples.

3.1 Synthetic Experiments

Numerical Stability. First, we generate a random rotation matrix Rgt, a
translation vector tgt, and focal lengths f1,gt, f2,gt from uniform distribution
[500, 2000]. To generate a PC, we sample a point X ∈ R3 from a Gaussian dis-
tribution with mean [0, 0, 5]T and standard deviation 1. We project X into the
first camera as p and into the second one as q. To generate an AC, we sample
four coplanar PCs, fit a homography onto them [32], and find the affine transfor-
mation A as the derivative of the homography [5] at the first PC. We combine
the first PC and A to get the AC. We calculate the depths λ1, λ2 as the distance
between X and the camera centers. To calculate the depth derivatives ∇λ1, we
perturb the projection p in both u and v directions, intersect the perturbed pro-
jections with the plane defined by the four sampled points, measure the distance
λ′
1 between the camera center and the intersection, and calculate the derivative

as λ′−λ. We find the derivative ∇λ2 in a similar way. Since the scale is relative,
we generate a random scale factor σ ∈ R and multiply λ2 and ∇λ2 by σ. Let
Rest, test, fest, respectively, the rotation, translation, and focal length estimated
by the solver. For fundamental matrix solvers, we decompose the relative pose
and the focal length from the estimated Fest. We measure the rotation error as
the angle of the rotation represented as Rest

TRgt, and the translation error as
the angle between vectors test and tGT.

We generated n = 100000 random problem instances and ran the solvers on
the noiseless samples. Fig. 3 shows histograms of rotation and translation errors
in radians. The proposed solver 1AC+D has a peak close to 10−1 which is usually
considered unstable. However, in our case, this case is detectable and we can run
the other minimal solver (1AC+1PC) designed specifically for this particular
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Fig. 4: Angular errors avg. over 10000 runs as a function of the image, affine, and
depth noise (horizontal axis). The parameters fixed for a test are reported in the titles.

scenario. Note that the 7PC solver also has a degeneracy when observing close-to-
planar scenes. This is visible by peaking at 100. The proposed 1AC+1PC solver
that runs in the case the camera observes a fronto-parallel plane is particularly
stable without any peak close to 100. In this case, decomposing F does not yield a
correct solution, as described in Sec. 2.3. Therefore, we estimate the focal length
with the procedure introduced in the Supplementary Material. We note that in
practice, it is usually possible to retrieve the focal lengths for situations close to
the fronto-parallel case by applying BA before decomposing F.

Tests with noise. To evaluate the robustness of the solvers to the noise in the
input data, we generated minimal problems like in the previous paragraph, and
we perturbed them with artificial noise. Namely, we added zero-mean Gaussian
noise with standard deviation i to the coordinates of each projected point. To
perturb the affine matrices A, we added zero-mean Gaussian noise with standard
deviation d to each of the 4 PC used to calculate A. To perturb the depths, we
multiplied them with scalars sampled from Gaussian distribution with mean 1
and standard deviation d.

Errors of the solvers with artificial input noise are displayed in Fig. 4. The
top row shows the average rotation in degrees, the middle row the translation
errors in degrees, and the bottom row the relative error of the focal length. The
main message of these synthetic experiments is that both the proposed solvers
act reasonably w.r.t. to noise in the data. 1AC+D is almost always more accu-
rate than the affine-based solver. In certain situations, it is more accurate than
7PC. 1AC+1PC shows similar trends to the 3AC solver. The image noise has
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Fig. 5: The cumulative distribution functions (CDFs) of the rotation (left) and transla-
tion (middle) errors in degrees and the runtime (right) in secs of the 6PC [42], 7PC [32],
3AC [6], AC-to-3PC [17], 4SIFT [7], 5ORB [4], and the proposed 1AC+D (Sec. 2.3)
and 1AC+D+ (Sec. 2.4) solvers integrated into GC-RANSAC [8] on datasets Photo-
Tourism, ScanNet, and KITTI. A curve close to the top-left corner indicates accuracy.

a negligible effect on the 1AC+D solver, with depth noise having larger impact
than affine noise. This is expected since only one constraint comes from the
points and the rest from the depth or the affine elements; a similar behavior is
seen in [70]. The average error of the 7PC solver is not zero when no noise is
added since 7PC is degenerate when the points are close-to-planar. Therefore,
the method fails in some cases. However, it is important to note that no work an-
alyzes realistic noise levels in affine correspondences. Therefore, we cannot draw
conclusions other than the proposed solver acting reasonably w.r.t. to increasing
noise levels in the data. More synthetic tests, evaluating the solvers in specific
scenarios, can be found in the Supplementary material.

3.2 Real-world Experiments

In this section, we test the proposed and other solvers on real-world data from
public datasets. We obtain ACs by detecting DoG features [44], finding the affine
shape by AffNet [50], and extracting HardNet [49] descriptors. This approach is
among the leaders in the IMC 2020 benchmark [35]. We obtain relative depth
by MiDaS-v3 [60, 61]. Note, that we do not use ground truth depth. The depth
estimation takes about 12 ms, and it only needs to be calculated once per image,
i.e., if we perform exhaustive pose estimation on n images, which is a standard
step of 3D reconstruction pipelines, we need to perform

(
n
2

)
pose estimations, and

only n depth estimations. As relative pose estimation is on average, 1-5 times
slower than depth estimation, the latter becomes marginal when the image count
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surpasses 20. Examples are in Fig. 2. The depth derivates are calculated from
the depth images using bilinear sampling to achieve subpixel accuracy.

The tested solvers are integrated within the state-of-the-art GC-RANSAC [8]
robust estimator, which is the standard approach today [11]. Although AC-based
methods do not work without local optimization (LO) due to the noisy ACs,
with LO, they can achieve SOTA accuracy as shown in [11], and in Tabs. 1, 2, 3.
GC-RANSAC uses two types of solvers, one for estimating the model from a
minimal sample and one for estimating from a larger-than-minimal sample. We
set the parameters similarly as was proposed in [3]. We noticed that the focal
lengths that solvers (such as 6PC, 3AC, 1AC+D, and 1AC+1PC) estimate lead
to unstable results even when using weighted histogram voting [15]. Thus, we
use the implied fundamental matrix inside GC-RANSAC. The reported relative
poses and focal lengths are decomposed from the estimated Fs by [12].

7PC 6PC 3AC AC-to-3PC 4SIFT 5ORB 1AC+D 1AC+D+

AVG 19.5 17.7 17.4 18.6 20.7 16.3 16.1 14.6
MED 3.6 3.9 3.1 3.2 3.8 3.4 3.2 3.0
AUC@5◦ 41.2 39.3 42.8 42.4 39.1 40.2 41.9 43.0
AUC@10◦ 49.5 48.6 51.5 51.0 46.9 48.7 51.6 52.8
AUC@20◦ 58.1 58.7 60.5 59.9 55.1 58.0 61.9 63.2
t (ms) 15.4 12.7 14.7 15.3 15.8 19.9 45.9 24.2

Table 1: Avg. and median pose errors (in degrees; max. of the rotation and translation
errors), the AUC score at 5◦, 10◦, and 20◦ and average runtime (in milliseconds) on the
PhotoTourism dataset [35]. The best results are bold, the second bests are underlined.

PhotoTourism. We use the data from the CVPR IMC 2020 PhotoTourism
challenge [35]. It consists of 25 scenes (2 – validation; 12 – training; 11 – test
sets) of landmarks with photos of varying sizes and focal lengths collected from
the internet. We run the methods on the two scenes from the validation split
with a total of 9900 image pairs.

The avg. and median pose errors in degrees, the Area Under the recall Curve
(AUC) thresholded at 5◦, 10◦, and 20◦, and the avg. runtime in milliseconds
are reported in Table 1. The pose errors are calculated by taking the max.
rotation and translation errors. The proposed approach (1AC+D+) that runs
the 1AC+D solver and, in case of degeneracy, runs an exhaustive search on
the correspondences, leading to a significant improvement in terms of accuracy
compared with other solvers. All methods run in real time.

The cumulative distribution functions (CDFs) of the rotation and translation
errors and runtimes are shown in the top row of Fig. 5. The rotation errors of all
methods show very similar trends. The translation errors of both 1AC+D and
1AC+D+ are the best, with the curve of 1AC+D+ being marginally higher than
that of 1AC+D. The runtime curves show that 1AC+D is slow, due to the in-
creased iteration number of GC-RANSAC to cope with the degeneracy. 1AC+D+

runs at a similar speed as the other solvers, always terminating under 0.1s.
ScanNet. The ScanNet dataset [19] contains 1613 monocular sequences with
ground truth camera poses and depth maps. We evaluate the compared minimal
solvers on the 1500 challenging pairs used in SuperGlue [63]. The results are
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in Table 2. The proposed 1AC+D+ solver achieves the best accuracy in all
accuracy metrics. Despite the degeneracy check and model upgrade process, it is
the second fastest, being only marginally slower than the 7PC solver (by 2ms).
We can see that the degenerate solver without the upgrade requires significantly
more iterations (thus the increased runtime) to find a good minimal sample.

The cumulative distribution functions (CDFs) of the rotation, translation
errors, and processing times are in the middle row of Fig. 5. The proposed
1AC+D+ solver leads to the best rotation accuracy, especially under 25◦. The
translation errors of the methods are similar, with 1AC+D+ being marginally
better than the rest of the methods. Similarly, as on PhotoTourism, the runtime
curves show that 1AC+D as it requires more iterations due to the degeneracy.
1AC+D+ runs at a similar speed as the other solvers.

7PC 6PC 3AC AC-to-3PC 4SIFT 5ORB 1AC+D 1AC+D+

AVG 43.5 44.0 52.6 52.2 54.4 51.3 46.1 42.9
MED 34.8 33.3 43.8 43.0 46.8 45.3 35.8 31.3
AUC@5◦ 6.3 6.5 6.4 6.5 6.0 5.6 6.5 6.6
AUC@10◦ 13.7 14.0 13.5 13.6 12.4 12.0 14.1 14.7
AUC@20◦ 23.3 23.2 22.1 22.4 20.4 20.5 24.0 25.2
t (ms) 39.9 40.5 44.1 42.3 41.3 84.8 130.8 41.5

Table 2: Avg. and median pose errors (in degrees; max. of the rotation and translation
errors), the AUC score at 5◦, 10◦, and 20◦ and average runtime (in milliseconds) on
the ScanNet dataset [19].

KITTI. The KITTI dataset [28] is a real-world benchmark for tasks stereo, op-
tical flow, visual odometry, 3D object detection, and tracking. It is captured by
driving in the city of Karlsruhe with accurate ground truth from the laser scanner
and GPS localization system. We tested our method on the 11 visual odometry
sequences that are provided with ground truth. The avg. number of images in
the sequences is 1826. We test the methods by using different frame distances d.
We iterate through the frames in a sequence and, to form an image pair in the
kth frame, we select the (k + d)th image. We run tests on d ∈ {5, 10, 25}.

The results are reported in Table 3. While the differences when d = 5 are
small, they get more pronounced as d increases. The proposed solvers always
lead to the best accuracy in all metrics. With large d, the improvements from
the proposed 1AC+D+ solver are significant compared to 7PC and 3AC. Also,
the methods get faster due to finding fewer correspondences. For d = 25, the
proposed 1AC+D+ is the fastest, running twice as fast as the 7PC solver.

The cumulative distribution functions (CDFs) of the rotation and translation
errors and processing times are shown in the bottom row of Fig. 5. For these
plots, all d ∈ {5, 10, 25} are considered. The rotation accuracy looks similar
for all methods except for the 4SIFT solver, which is inaccurate on this dataset.
The translations exhibit more significant differences, with the 1AC+D+ and 7PC
methods being the best. 1AC+D+ is one of the fastest algorithms on this dataset,
finishing under 0.1 seconds in all cases. Note, that KITTI contains surfaces not
parallel to the camera (road, buildings on the side). Therefore, solver 1AC+D
gets enough non-degenerate samples, although the rotation between views is
often very small.
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7PC 6PC 3AC AC-to-3PC 4SIFT 5ORB 1AC+D 1AC+D+

k
,k

+
5

AVG 6.3 6.7 6.2 6.7 9.8 7.3 6.2 6.2
MED 2.1 2.2 2.1 2.2 2.4 2.2 2.1 2.1
AUC@5◦ 46.3 45.4 46.3 45.3 42.8 44.9 46.4 46.4
AUC@10◦ 61.7 60.9 61.7 60.8 57.5 60.2 61.8 61.8
AUC@20◦ 74.5 73.4 74.5 73.3 69.4 72.6 74.6 74.6
t (ms) 29.1 29.8 23.5 18.8 24.6 24.8 93.6 55.2

k
,k

+
1
0

AVG 11.7 13.3 11.5 14.6 27.1 16.4 11.1 11.0
MED 3.7 4.0 3.7 4.3 9.1 4.7 3.7 3.6
AUC@5◦ 33.7 32.1 33.8 31.0 23.6 29.5 34.0 34.1
AUC@10◦ 49.5 47.7 49.6 45.7 35.3 43.9 49.9 50.0
AUC@20◦ 63.2 61.1 63.3 58.3 45.7 56.5 63.8 63.8
t (ms) 30.6 140.5 22.4 33.7 46.0 60.8 56.7 35.4

k
,k

+
2
5

AVG 30.7 38.4 30.5 40.1 71.9 45.5 26.9 26.8
MED 10.7 24.1 11.1 39.2 75.4 39.5 8.6 8.8
AUC@5◦ 17.1 11.6 16.7 9.0 4.3 8.2 18.7 18.6
AUC@10◦ 29.8 20.9 29.2 15.7 7.8 15.3 32.6 32.4
AUC@20◦ 42.7 31.2 42.2 22.7 11.8 23.3 46.9 46.6
t (ms) 23.9 376.8 14.3 68.3 61.5 121.2 14.2 11.5

Table 3: Avg. and med. pose errors (in degrees; max. of the rot. and trans. errors),
the AUC score at 5◦, 10◦, and 20◦ and average runtime (in milliseconds) on the KITTI
dataset [28] with different distances between the consecutive frames Ik and Ik+d.

7PC 6PC 3AC AC-to-3PC 4SIFT 5ORB 1AC+D 1AC+D+

PhotoT. 23.1 21.9 21.2 20.9 21.7 22.2 21.1 20.7
ScanNet 19.8 24.4 15.9 17.9 18.3 19.8 20.1 18.9

KITTI 73.6 71.8 70.0 71.1 81.2 76.0 67.5 68.5
Table 4: Median relative focal length errors (in %). The best results are in bold, and
the second bests are underlined.

Focal length. The median relative focal length errors are in Table 4. Both on
the PhotoTourism and KITTI datasets, the proposed solvers lead to the most
accurate focal length. On ScanNet, the 3AC method achieves the lowest error.
However, the proposed solvers also lead to comparable accuracy.

4 Conclusions

This paper proposes a new approach to semi-calibrated relative pose estima-
tion from a single affine correspondence and predicted monocular depth. The
proposed method is the first minimal solver for this problem and provides sig-
nificant improvements in efficiency and accuracy over existing methods. We also
propose a second solver that addresses the degeneracies in the data and improves
the accuracy of the estimation when the first solver fails. Through extensive ex-
periments on indoor and outdoor datasets, we demonstrate that the proposed
method outperforms standard algorithms, achieving more accurate fundamental
matrices with fewer correspondences. The proposed method has potential ap-
plications in various computer vision tasks, including 3D reconstruction, visual
localization, simultaneous localization and mapping, and multi-view stereo. The
code is available at https://github.com/petrhruby97/semicalibrated_1AC_D.
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