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Abstract. Recent pose-based gait recognition methods, which utilize
human skeletons as the model input, have demonstrated significant po-
tential in handling variations in clothing and occlusions. However, meth-
ods relying on such skeleton to encode pose are constrained mainly by two
problems: (1) poor performance caused by the shape loss, and (2) lack of
generalizability. Addressing these limitations, we revisit pose-based gait
recognition and develop GaitHeat, a heatmap-based framework that
largely enhances performance and robustness by utilizing a new modal-
ity to encode pose rather than keypoint coordinates. We make our ef-
forts from two aspects, the pipeline and the extraction of multi-channel
heatmap features. Specifically, the process of resizing and centering is
performed in the RGB space to largely preserve the integrity of heatmap
information. To boost the generalization across various datasets further,
we propose a pose-guided heatmap alignment module to eliminate the
influence of gait-irrelevant covariates. Furthermore, a global-local net-
work incorporating an efficient fusion branch is designed to improve the
extraction of semantic information. Compared to skeleton-based meth-
ods, GaitHeat exhibits superior performance in learning gait features
and demonstrates effective generalization across different datasets. Ex-
periments on three datasets reveal that our proposed method achieves
state-of-the-art results for pose-based gait recognition, comparable to
that of silhouette-based approaches. All the source code is available at
https://github.com/BNU-IVC/FastPoseGait.

Keywords: Gait Recognition · Heatmap Representation · Generaliza-
tion Ability

1 Introduction

Gait, an essential biometric characteristic, has garnered considerable attention
for its application in identification tasks. Unlike other biometrics, gait is inher-
ently difficult to disguise and can be captured at a long distance. Leveraging
these advantages, gait recognition has been increasingly deployed in security
applications [24,27,30], including suspect tracking and identity verification.
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Fig. 1: GaitHeat achieves state-of-the-art performance for pose-based gait recognition
and comparable results to silhouette-based approaches. Best viewed in color.

Recent progress in gait recognition has primarily utilized two types of input:
silhouettes and skeletons. The silhouettes reserve the human shape and Con-
volution Neural Network (CNN) is mainly utilized to extract spatial-temporal
patterns [1,4,6,13,14,18,21,29]. Contrastively, the skeletons encode the human
pose and Graph Convolution Network (GCN) is usually employed to discover
the individualized features [7, 20, 33, 34, 39]. Although the silhouette-based re-
search holds state-of-the-art on most existing benchmarks, it has great potential
to perform gait recognition on human pose which is theoretically robust to the
carrying and clothing covariates.

However, the current pose-based gait recognition with skeletons has consid-
erable drawbacks. (1) Poor Performance. Despite the recent improvement [7,
19, 33, 34, 39], the performance of skeleton-based methods is frustratingly infe-
rior to the silhouette-based ones on most benchmarks [1, 4, 6, 21]. The probable
reason is that the shape information is almost inevitably lost in the skeletons.
(2) Lack of Generalization Ability. The skeleton-based methods often fail
to generalize the different domains [7, 33, 34, 39], which is largely caused by the
dependency on the accurate keypoint positions.

Keeping these limitations in mind, we revisit the entire pipeline of pose-based
gait recognition starting from RGB frames and find that the current pose-based
research takes it for granted that the skeletons are used as the intermediate rep-
resentations between pose estimation and gait recognition. However, we argue
that it is not definitely necessary to take the skeletons to encode the pose from
the perspective of gait recognition. Based on this point of view, we further ob-
serve that most state-of-the-art methods for pose estimation [31,37] regress the
skeletons according to the heatmaps that encode the probability distribution of
each keypoint separately. A natural idea comes to us: can we adopt the heatmaps
to perform gait recognition to skip the skeletons? Intuitively, the heatmaps have
two important advantages to exactly deal with the drawbacks of skeletons men-
tioned above. (1) Encoding the pose and partially reserving the shape
information. (2) Enhanced robustness to the errors of keypoint predic-
tions. For clarity, we call the heatmap-based strategy Cut out the Middleman
where the skeletons are omitted in the entire pipeline.
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However, performing pose-based gait recognition with heatmaps also faces
crucial challenges. (1) Pretreatment Sensitivity. Analogous to silhouettes, the
heatmaps of various sizes need to be pretreated into a fixed resolution for the
convenience of feature extraction. However, the distribution of the edge area
encoding the shape in multi-channel heatmaps is more complex than the corre-
sponding binary silhouette, and the resize operation [5] is more likely to corrupt
the individualized details. Furthermore, due to changes in the view and human
movement, the positions of human bodies in the heatmap are not strictly aligned,
which reduces the generalization ability of the model. (2) Integration Confusion.
Instead of a single channel for a silhouette or a graph for a skeleton, there are
a couple of heatmaps estimated from a frame to encode the human pose, as
shown in Fig. 1. How to effectively integrate them and extract discriminative
features that sufficiently utilize human part semantic information, is challenging
and remains an open question.

In this work, we make a pioneering attempt to conduct pose-based gait recog-
nition with heatmaps and provide a simple yet effective framework to tackle
the above challenges. Specifically, for the first challenge, we innovate the entire
pipeline and perform the pretreatment in RGB space ahead of pose estimation
to ensure that the generated heatmaps can be more easily adopted as the in-
put for recognition without further processing. Our key intuition lies in that the
RGB frames are less sensitive to the resize operations and the alignment can
largely be achieved implicitly by using the same detection and pose estimation
models. This simple yet insightful improvement can remarkably benefit down-
stream recognition. To tackle more challenging scenarios, such as body rotation
and bias, we introduce a Pose-Guided Heatmap Alignment module to further
eliminate the dataset covariance and improve the generalization ability of our
network. For the second challenge, we investigate the partial fusion strategies to
integrate multi-channel headmaps of a frame, and effectively incorporate them
in a global-local framework.

To summarize, the main contributions of this work can be boiled down to
three aspects:

– We present a new perspective on pose-based gait recognition and propose to
adopt the heatmaps, which are generated from the upstream task, instead
of the skeletons as the intermediate representations.

– We point out the key challenges to performing gait recognition based on
heatmaps and provide a simple yet non-trivial solution based on the insights
of the entire pipeline and a comprehensive study.

– Extensive experiments demonstrate the potential of pose-based gait recog-
nition with heatmaps. For example, on SUSTech1K [28], our approach out-
performs the recent silhouette-based and skeleton-based baselines by a large
margin, e.g ., ↑ 13.88% vs. GaitBase [4] and ↑ 47.55% vs. GPGait [7] in terms
of rank-1 accuracy.
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2 Related Work

2.1 Gait Recognition

Appearance-based Methods. Appearance-based methods are the prevalent
choice for extracting gait patterns, focusing on spatial-temporal correlations and
fine-grained features. For instance, GaitSet [1] treats gait silhouette sequences
as an unordered set, employing a set pooling mechanism to integrate temporal
information. GaitPart [6] incorporates a micro-motion capture module for mod-
eling temporal dependencies. GaitGL [21] advances this approach with a 3D
convolution-based feature extractor that captures both global and local spatial-
temporal details. DyGait [35] introduces a Dynamic Augmentation Module,
enhancing the spatial-temporal representation of the body’s dynamic regions.
DroneGait [16] contributes to the field with a novel dataset obtained from dif-
ferent vertical angles, utilizing distillation to refine gait recognition from high
perspectives. GaitParsing [36] marks a significant leap forward by leveraging se-
mantic parsing to boost gait recognition accuracy. GaitBase [4] emerges as a new
baseline model, distinguished by its uncomplicated yet robust design.

Model-based Methods. PoseGait [20] leverages 3D human body keypoints as
the representation for feature extraction, utilizing human pose and prior knowl-
edge. These features are then processed by a CNN to extract gait information.
GaitGraph [34] and its more advanced version GaitGraph2 [33] adopt GCN for
gait recognition, regarding the human body as a graph. GaitTR [39] and Gait-
Mixer [26] bring innovations by introducing self-attention mechanisms, which
allow for broader spatial relationships, and by using temporal convolution with
enlarged kernels to capture extended temporal patterns. GPGait [7] introduces
Human-Oriented Transformation alongside a Part-Aware Graph Convolutional
Network, enhancing generalization across various datasets. Additionally, PAA [9]
presents a physics-augmented autoencoder for 3D skeleton-based gait recogni-
tion, achieving notable advancements in performance.

2.2 Heatmap Representation

Heatmap is widely used in pose estimation [31,37] as an intermediate represen-
tation since it can preserve the spatial structure of input image compared to
regression-based methods. Liu et al. [22] pioneer the use of heatmaps as input
for action recognition. PoTion [2] aggregates heatmaps across the temporal di-
mension into a 2D input using color encodings. It utilizes a shallow CNN to
extract features that complement traditional appearance and motion streams.
PoseConv3D [3] advances this technique by introducing 3D volume heatmaps
and employing 3D convolutional neural networks to capture spatial and tempo-
ral information, showcasing superior performance across various action recogni-
tion datasets. This idea has been extended to gait recognition by Liao et al. [19]
and Fan et al. [5]. Liao et al. explore the byproduct of pose estimation as the
input, while Fan et al. regenerate a heatmap from the pose coordinates as the
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input feature. Both works lack a specific network design to fully leverage the se-
mantic information of the new modality. In addition, the former method has not
demonstrated competitive results on gait datasets compared with skeleton-based
methods [7,33,34,39], while the latter suffers from the redundant post-processing
and shape loss.

3 Methods

Overview As illustrated in Fig. 2(b), RGB images undergo human detection
for human bounding boxes. The images, cropped to focus on the human area
according to these boxes, are subsequently fed into a pose estimation algorithm
to generate the corresponding heatmaps. Instead of decoding these heatmaps
into discrete keypoints in Fig. 2(a), we utilize the human-box-centered and in-
formative heatmaps as the input of our downstream model. As shown in Fig. 3,
Pose-Guided Heatmap Alignment is utilized to reduce the effects of covariance
and improve generalization across various datasets. Following this, a parameter-
sharing global-local network is employed to thoroughly exploit the semantic spa-
tial context and positional cues at both global and local levels. Moreover, we
propose a multi-stage feature fusion branch to achieve a compact embedding,
facilitating rapid retrieval. To integrate the independent partial features in the
local branches, the Max Response (MR) is introduced. Subsequently, Set Pool-
ing [1] and Horizontal Pyramid Mapping (HPM) [1] are employed to extract part
features, followed by the application of BNNeck [23] to refine the feature space.
The entire process is supervised using both Triplet loss [12] and Cross-entropy
loss.

3.1 Revisiting Pose-based Gait Recognition

Heatmaps vs. Skeletons As Fig. 2(a) shows, the previous pose-based method
involves an extra step of transforming heatmaps into a skeleton. In this process,
discrete 2D skeletons in the original images are derived by decoding, based on
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Fig. 2: A comparison of existing pose-based methods with ours at a framework level. (a)
Existing methods: shape-loss and estimation error-sensitive. (b) Ours: shape-retention
and estimation error-insensitive. We leverage intermediate visual presentations from
the upstream task in Stage1 for further gait feature extraction in Stage2.
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Fig. 3: An overview of GaitHeat. ’Res’ denotes residual block [10], ’MR’ stands for the
max response operation, ’SP’ indicates set pooling [1], and ’HPM’ refers to horizontal
pyramid mapping [1]. We first align the heatmaps with a parameter-free Pose-Guided
Heatmap Alignment module and then fuse them by a human partition strategy. Finally,
we extract informative features with a parameter-sharing global-local network and
design a multi-stage feature fusion branch for efficient storage and retrieval. More
details about Pose-Guided Heatmap Alignment can be found in Fig. 4.

the positions of the maximum values in the heatmap and the locations of the
bounding boxes. As shown in Fig. 2(b), we bypass the decoding step and ob-
tain the heatmaps of size V × H × W from the upstream, where V represents
the number of joints, H and W denote the height and width of a heatmap, re-
spectively. Compared to discrete 2D skeletons, the advantages of 2D heatmaps
can be summarized in two aspects: (1) Informative Shapes: previous pose-based
gait recognition encounters the issue of human shape loss, which leads to the
inferior performance of pose-based methods. The 2D heatmap we proposed mit-
igates this issue by providing informative shape information. As demonstrated in
Fig. 2, the heatmap displays keypoint peaks within a silhouette-like shade, offer-
ing a richer representation of body shape. (2) Enhanced Robustness: Heatmaps
represent the probability distribution of each keypoint in a continuous space, in
contrast to discrete point representation. This feature enables a model to over-
come uncertainties and variations, which is valuable in scenarios with imprecise
or obscured keypoints. Even at night, heatmaps can still offer partial locational
cues with informative shape information, whereas discrete keypoints might fail
or yield unreliable results.

3.2 Heatmap-based Gait Recognition

In this section, we tackle two major challenges in pose-based gait recognition
using heatmaps: sensitivity to pretreatment and confusion in integration. To
address these issues and demonstrate the viability and effectiveness of heatmap-
based gait recognition, we introduce a simple yet effective solution. This involves
innovating the heatmap generation process, introducing an alignment module to
mitigate the influence of covariance, and investigating various strategies for the
effective integration and extraction of multi-channel heatmaps.
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Challenge 1: Pretreatment Sensitivity

Pretreatment in RGB Space. The previous methods for gait recognition typically
involve pretreatment steps to achieve a generalized representation. For instance,
GPGait [7] employs Human-Oriented Transformation to center and rescale the
skeleton, while GaitSet [1] utilizes normalization methods [32] to center and
resize silhouettes.

However, the distribution of values in multi-channel heatmaps is more com-
plex than that of binary silhouettes, making the resize operation more prone
to the loss of individualized details. In contrast, our approach performs pre-
treatment in the RGB space before pose estimation, ensuring that the resulting
heatmaps can be used for recognition without resizing processing. The key idea
is that RGB frames are less sensitive to resizing, and centering can be implicitly
achieved using consistent detection and pose estimation models.

Specifically, as shown in Fig. 2(b), our heatmap generation process involves
three steps. (1) Detection: The human detection algorithm determines the cor-
responding bounding box for a human using top-left and bottom-right coordi-
nates. (2) Resize in RGB space: Padding is applied to the detected box with
a fixed ratio,e.g.,×1.25, ensuring that the predicted heatmap remains within
the boundary. To centralize the human area in RGB space and avoid complex
post-processing, the cropped image based on the detection box is resized to a
fixed dimension of 3 ×H

′ ×W
′
. For the area of the resized detection box that

extends beyond the RGB image, we apply zero-padding on the image to pre-
serve the human ratio. This step ensures the body ratio remains unchanged and
results in a consistently sized image. (3) Pose estimation: The resized image is
then inputted into pose estimation, leading to the generation of heatmaps sized
V ×H×W . These heatmaps feature a fixed size and a human-centered property,
thus eliminating the need for complex and lossy post-processing in [5].

Pose-Guided Heatmap Alignment. Although generating heatmaps in RGB space
has to some extent centralized the human area, dealing with significant human
tilt and bias, as caused by camera perspectives and human movement, remains a
challenge. To tackle the issue, we proposed a Pose-Guided Heatmap Alignment
module (PGHA) to mitigate the effects of covariance, which involves a rotation
transform to correct tilt and a translation transform to adjust for movement bias.
The proposed module utilizes a few keypoints from the heatmaps and guides the

...

argmax Rotation
Matrix
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Matrix

Neck
Hip

MR MT

G
rid

G
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Sampler Sampler

Fig. 4: The Pose-Guided Heatmap Alignment Module in GaitHeat.
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alignment without relying on additional parameters. As illustrated in Fig. 4, the
PGHA consists of two main steps: (1) Generating the transform matrix M , i.e.,
rotation matrix and translation matrix. (2) Generating grid and sampling, where
the grid establishes a pixel-wise location mapping between the transformed and
original images. During the sampling phase, bilinear interpolation is utilized to
precisely determine the pixel values for the transformed image based on the
corresponding mapping positions of the original image.

Specifically, for the given multi-channel heatmaps X, we employ argmax to
locate maximum response positions Pneck and Phip within the corresponding
heatmaps channels. Considering the line connecting the neck and hip as analo-
gous to the human spine, which is presumed to align vertically in most scenarios,
we assess the rotation angle θ.

θ = arctan(P x
neck − P x

hip, P
y
neck − P y

hip). (1)

We utilize the rotation matrix MR to rotate the heatmaps around the mid-
point Pmid between the neck and hip, thereby eliminating the effects of inclina-
tion covariance.

MR =

[
cos (−θ) − sin (−θ) (1− cos (−θ))× P x

mid + sin (−θ)× P y
mid

sin (−θ) cos (−θ) − sin (−θ)× P x
mid + (1− cos (−θ))× P y

mid

]
. (2)

Then we produce the translation matrix MT , aimed at reducing the influence
of positional deviations due to the human movement. In detail, we calculate the
bias between rotated Pneck and the predefined fixed position Palign across both
the x-axis and y-axis. The biases identified are then used to formulate MT :

[xbias, ybias]
⊤ = [P x

align, P
y
align]

⊤ −MR[P
x
neck, P

y
neck, 1]

⊤,

MT =

[
1 0 −xbias

0 1 −ybias

]
.

(3)

After obtaining the transformation matrices, we employ the same approach as
in the STN [15] to generate a grid and sampling corresponding value using the
transformation matrixes, i.e MR and MT . For instance, given a location (xt, yt)
in the transformed image, the corresponding location (xs, ys) in the input image
is determined by the transformation matrix M .

(
xs

ys

)
= M

xt

yt

1

 . (4)

The value at (xt, yt) in the transformed image is then sampled from the input
image in (xs, ys) using bilinear interpolation for precise value acquisition, as
(xs, ys) might not be integer.

Challenge 2: Integration Confusion
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Multi-Channel Heatmap Integration. For a set of T heatmaps Xin ∈ RV×T×H×W

aligned by PGHA module, the global features are derived by fusing the entire
body’s heatmaps through Max operation along the V dimension. This process
aggregates the information across all channels to capture a holistic representa-
tion of the body’s pose. For the local feature, a variety of partitioning strategies,
denoted as U = {u1, ...uK}, are utilized to partially fuse the heatmaps. These
strategies are designed to selectively integrate semantic information from differ-
ent regions of human body, enabling the model to focus on specific aspects of
the pose that are most discriminative for identification tasks. The operations are
formalized as follows:

Xg = Max{Xin}, Xl = concatenate(Max{Xu1
in }, ...,Max{XuK

in }), (5)

where Xg ∈ RT×H×W represents the global heatmaps, while Xl ∈ RK×T×H×W

denotes the local heatmaps. The concatenate means concatenating the local
features from K kinds of partitioning strategies in the batch dimension for pa-
rameter sharing.

A Global-Local Framework. Gait recognition, being a fine-grained task, requires
the model to not only discover the overall structure but also needs the model to
focus on the specific human body regions to extract discriminative identification
features. With this in mind, we propose utilizing a global-local network to meet
these demands and fully explore the semantic information of heatmaps. In this
framework, the global branch processes information from the entire human body,
whereas the local one is dedicated to enhancing the details from specific body
areas. To further accelerate the model’s learning process and improve the inter-
action between the global context with local detailed information, as illustrated
in Fig. 3, these heatmaps are fed into a parameter-sharing network, denoted as
Fshare to obtain the feature maps fg and fl, respectively:

fg = Fshare(Xg), fl = Fshare(Xl), (6)

where fg ∈ RD×T×H
4 ×W

4 and fl ∈ RK×D×T×H
4 ×W

4 with D denoting the chan-
nel dimension. To enhance the interaction between these parts, we use a Max
Response (MR) operation. It merges partial representations into a global-like
representation by maximizing the response of each part, thereby improving the
complementarity of the features across different body partitions.

fagg = MR(flocal)

= max{flocal1 , ...flocalK},
(7)

where aggregated local feature fagg ∈ RD×T×H
4 ×W

4 . After MR, set pooling sep-
arately merges the local feature fagg and global feature fg in the temporal
dimension. Subsequently, the local and global features independently undergo
horizontal pyramid mapping HPM [8] and BNNeck [23] for loss optimization.
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A Multi-Stage Fusion Branch. Given the high-dimensional feature representation
resulting from multi-branches feature extraction, which could require extensive
storage and decelerate the retrieval process, a multi-stage fusion branch is in-
troduced. This approach employs the Max Response operation to fuse features
from different receptive fields at various stages, and then extracts gait features
from these fused features using a parameter-independent network, denoted as
Ffusion. Taking the fusion branch at the i-th layer, denoted as f i

fusion, as an
example, we use MR to fuse multiple features from the global-local branches,
and then add the fusion features produced by the current layer F i

fusion.

f i
fusion = MR(f i

local, f
i
global) + F i

fusion(f
i−1
fusion). (8)

Training and Testing. During the training phase, we deploy both triplet loss
[12] and cross-entropy loss to simultaneously train the global, local and fusion
branches. The loss function is defined as:

L = (Lglobal
tri + Lglobal

ce ) + (Llocal
tri + Llocal

ce ) + (Lfusion
tri + Lfusion

ce ). (9)

In this formula, Lglobal
tri , Llocal

tri , Lfusion
tri denote the triplet losses, Lglobal

ce , Llocal
ce , Lfusion

ce

represent the cross-entropy losses. In the testing phase, we only take the fusion
embedding for inference.

4 Experiments and Results

4.1 Settings

Datasets For comprehensive comparisons, we utilize three well-known gait
datasets: CASIA-B [38], CCPG [17], and SUSTech1K [28]. We strictly follow the
official evaluation protocols in our experiments. More details about the datasets
can be found in the supplementary materials.

Implementation Details

Data Pre-processing. Following the revisited pipeline, we are able to generate
heatmaps of a fixed size, 64×48, from the top-down pose estimation HRNet [31]
for three datasets. To evaluate the impact of our method on the latest pose
estimation algorithms, we propose GaitHeat++, which maintains the same ar-
chitecture but differs by employing heatmaps from ViTPose [37]. For the data
cleaning, we adopt the average score as a metric to assess the frame quality and
set a threshold of 0.4 to eliminate frames of low quality.

Gait Recognition. During training, we randomly select 30 frames from the un-
ordered gait sequence set, while for testing, we utilize all available frames. The
backbone in GaitHeat is ResNet9 [11] adapted from the GaitBase [4]. Further-
more, we reproduce four pose-based gait recognition algorithms based on Fast-
PoseGait [25]. When θ described in Eq. (1) is larger than the threshold γ, we
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adopt the operation of PGHA. γ is 5◦ for CASIA-B and SUSTech1K, and 20◦ for
CCPG, based on the statistics of specific datasets. To further mitigate the risk
of overfitting, we introduce a probability of 0.2 to perform PGHA when θ is
smaller than γ.

4.2 Performance Comparsion

Compared with Skeleton-based Methods GaitHeat exhibits significant
performance superiority over existing pose-based methods. Specifically, as shown
in Tab. 1 and Tab. 2, compared with the second-best result, it delivers an 18.84%
increase in rank-1 accuracy for CCPG in CL, and 34.49% for SUSTech1K. More-
over, GaitHeat demonstrates exceptional robustness in uncontrolled environ-
ments, as illustrated in Fig. 5. In such scenarios, traditional methods based on
silhouettes and keypoints sometimes fail to accurately capture the human pose.
However, heatmaps, as employed by GaitHeat, effectively encode the human
pose even in challenging low-light conditions. Specifically, within the SUSTech1K
dataset under nighttime conditions, while earlier pose-based methods reach their
highest rank-1 accuracies of 31.8%, GaitHeat surpasses these best-performing
methods by a significant margin of 29.65%, underlining its effectiveness and
robustness in accurately capturing human gait patterns across diverse and chal-
lenging conditions.

Compard with Other State-of-the-Arts Methods The comparison method
mentioned above utilizes the pose estimation outcomes from HRNet [31]. To fur-
ther explore the potential of the heatmap-based method, we employ high-quality
prediction results from ViTPose [37] as input, naming this enhanced approach
GaitHeat++. As shown in Tab. 1 and 2, GaitHeat++ significantly enhances
accuracies beyond the original versions, achieving results comparable to those
of silhouette-based methods. For instance, compared with its vanilla version,
GaitHeat++ improves the rank-1 accuracy by 7.77% in CASIA-B, 9.45% of
CL in CCPG, and 13.06% in SUSTech1K. Furthermore, in comparison with
the silhouette-based method of GaitGL, GaitHeat++ secures a 4.11% improve-
ment in rank-1 accuracy on CASIA-B. Remarkably, even when compared to

(a) (b) (c)

Fig. 5: The visualization of some examples in SUSTech1K. From left to right: the
original RGB image, silhouette, keypoints, and heatmap. In case (a), the three repre-
sentations accurately depict daytime scene features. In case (b), segmentation fails in
the evening. In case (c), under darkness, the heatmap provides more positional cues
and shape information.
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Table 1: Performance of state-of-the-art pose-based and silhouette-based methods on
CASIA-B [38] and CCPG [17]. The bold values represent the best result of pose-based
methods.

Method Input
CASIA-B CCPG

NM BG CL Mean CL UP DN BG
R-1 (%) R-1 & mAP(%)

GaitSet (AAAI’19) [1]

Sils

95.00 87.20 70.40 84.20 77.80 46.58 83.28 60.94 82.38 61.85 85.84 64.18
GaitPart (CVPR’20) [6] 96.20 91.50 78.70 88.80 75.83 44.10 82.67 60.15 83.75 59.93 86.43 63.38
GaitGL (ICCV’21) [21] 97.40 94.50 83.60 91.83 73.81 35.52 80.59 49.04 79.83 48.14 83.36 52.58
GaitBase (CVPR’23) [4] 97.60 94.00 77.40 89.67 87.72 58.56 92.37 72.93 92.60 73.10 93.17 76.58
GaitGraph (ICIP’21) [34]

Pose

86.37 76.50 65.24 76.04 20.50 11.56 30.74 20.13 39.11 23.73 31.14 19.68
GaitGraph2 (CVPRW’22) [33] 80.29 71.40 63.80 71.83 15.54 5.64 21.06 8.90 26.21 10.26 20.14 8.89

GaitTR (ES’23) [39] 94.81 87.65 88.07 90.18 40.92 18.65 46.62 26.29 47.75 27.16 42.41 24.15
GPGait (ICCV’23) [7] 93.59 80.15 69.30 81.01 54.75 25.78 65.60 38.44 71.06 41.04 65.36 37.83

GaitHeat (Ours) 98.22 92.14 74.15 88.17 73.59 41.06 83.19 58.04 86.47 60.27 90.53 66.36
GaitHeat++ (Ours) 99.60 97.88 90.35 95.94 83.04 54.74 89.86 71.43 91.32 72.40 93.09 77.21

Table 2: Evaluation with different attributes on SUSTech1K [28]. The bold values
represent the best result of pose-based methods. NM, BG, CL, CA UM, UN, OC
and NG are abbreviations of Normal, Bag, Clothing, Carrying, Umbrella, Uniform,
Occlusion and Night.

Method Input Probe Sequence (Rank-1 acc) Overall
NM BG CL CA UM UN OC NG R-1 R-5

GaitSet (AAAI’19) [1]

Sils

69.10 68.25 37.44 65.01 63.08 61.00 67.19 23.04 65.04 84.76
GaitPart (CVPR’20) [6] 62.20 62.81 33.08 59.53 57.25 54.85 57.20 21.75 59.19 80.79
GaitGL (ICCV’21) [21] 67.11 66.16 35.92 63.31 61.58 58.07 66.59 17.88 63.14 82.82
GaitBase (CVPR’23) [4] 81.46 77.48 49.60 75.77 75.55 76.66 81.40 25.92 76.12 89.39

LidarGait (CVPR’23) [28] LiDAR 91.80 88.64 74.56 89.03 67.50 80.86 94.53 90.41 86.77 96.08
GaitGraph (ICIP’21) [34]

Pose

22.80 20.72 8.69 19.36 14.36 22.22 31.45 18.38 19.96 43.49
GaitGraph2 (CVPRW’22) [33] 25.98 21.95 7.77 22.03 17.65 22.28 28.46 20.81 22.11 46.27

GaitTR (ES’23) [39] 31.39 33.31 18.58 31.30 27.97 36.83 38.44 21.94 31.71 57.21
GPGait (ICCV’23) [7] 43.96 40.98 24.28 41.42 38.34 47.00 57.99 31.80 42.45 65.41

GaitHeat (Ours) 81.47 77.21 44.32 77.60 71.57 78.21 87.79 61.45 76.94 91.63
GaitHeat++ (Ours) 93.46 91.08 76.01 90.41 84.74 88.18 96.71 73.01 90.00 97.37

the best-performing method on SUSTech1K [28], which utilizes Lidar modality,
GaitHeat++ still demonstrates superior performance with a significant improve-
ment margin of 3.23%. This impressive achievement highlights the robustness of
our method across various environments, including challenging conditions such
as low-light situations at night.

Cross-domain Evaluation To evaluate the generalization capabilities of pose-
based methods, we conduct cross-dataset tests, i.e., training on source datasets
and evaluating on target datasets. As presented in Tab. 3, GaitHeat demon-
strates strong generalization when evaluated on CASIA-B and SUSTech1K.
However, its performance on the CCPG testing set is less impressive, with a
considerable result in the BG setting but weaker performance in clothing con-
ditions (CL, UP, DN). We attribute this discrepancy to differences in dataset
distribution. The CASIA-B and SUSTech1K feature fewer cloth-changing se-
quences compared to CCPG, which challenges GaitHeat’s ability to filter out
gait-irrelevant features in the presence of significant clothing variation. These
analyses indicate that the distribution of datasets can influence the generaliza-
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Table 3: Cross-Domain evaluation on three popular datasets of recent state-of-the-
art pose-based methods. CA, CC and SU are abbreviations of CASIA-B, CCPG and
SUSTech1K. The bold values represent the best result.

(a) Test on CASIA-B

Method
Train Set−→Test Set

CC−→CA SU−→CA
NM BG CL Mean NM BG CL Mean

GaitGraph 4.93 4.81 3.62 4.45 3.81 3.65 3.11 3.52
GaitGraph2 7.67 6.49 5.47 6.54 13.65 10.68 6.35 10.23

GaitTR 4.37 4.30 4.37 4.35 5.38 4.78 4.74 4.97
GPGait 40.80 33.09 19.15 31.01 56.36 44.41 22.71 41.16
GaitHeat 54.18 46.30 32.98 44.49 77.59 63.57 23.16 54.77

GaitHeat++ 58.85 50.45 35.14 48.15 74.78 66.37 26.73 55.96

(b) Test on SUSTech1K

Method
Train Set−→Test Set

CC−→SU CA−→SU
Rank1 Rank5 Rank1 Rank5

GaitGraph 1.03 3.72 1.1 3.88
GaitGraph2 0.82 3.12 0.81 2.95

GaitTR 0.61 2.23 0.84 3.03
GPGait 2.48 6.94 3.48 8.55
GaitHeat 11.45 25.00 10.51 22.41

GaitHeat++ 20.40 38.99 15.56 31.53

(c) Test on CCPG

Method
Train Set−→Test Set

CA−→CC SU−→CC
CL UP DN BG CL UP DN BG

GaitGraph 1.63 1.47 1.45 1.88 0.95 1.73 2.89 1.96
GaitGraph2 0.86 0.52 1.28 1.54 1.42 2.43 4.85 9.04

GaitTR 2.66 2.43 1.96 3.07 1.03 1.73 1.62 1.71
GPGait 11.85 16.46 19.75 21.50 9.49 13.61 21.45 21.16
GaitHeat 5.63 9.79 18.30 21.59 5.41 11.90 19.06 27.47

GaitHeat++ 8.16 13.69 17.19 20.48 2.36 4.42 7.15 13.06

tion ability of the model. With data from a more diverse distribution, the model
can achieve stronger generalization ability.

4.3 Ablation Study

Impact of Heatmap Type. The heatmap representation in GaitHeat offers a more
detailed shape depiction of the human body and avoids the loss of discrimi-
native information caused by the complex normalization process, compared to
the regenerated heatmap utilized in SkeletonGait [5]. For a fair comparison, we
adopt the same approach as SkeletonGait to generate a heatmap from keypoint
coordinates. As shown in Tab. 4, the original heatmap substantially surpasses
the regenerated method in performance. This can be attributed to the abil-
ity of the original heatmap to preserve essential pose and shape information
from the upstream task, whereas the process of converting keypoints back into
a heatmap leads to irreversible loss of information. Additionally, utilizing the
heatmap from upstream reduces the dependency on complex transformations
between heatmaps and keypoints, significantly improving efficiency in practical
scenarios. By retaining shape information from earlier stages and minimizing
information loss through extensive post-process operations, GaitHeat achieves a
12.92% increase in rank-1 accuracy over the regenerated approach on CASIA-B,
17.6% on CCPG in the CL setting, underscoring the effectiveness and efficiency
of utilizing heatmap representations in gait task.

Impact of Pose-Guided Heatmap Alignment. The Pose-Guided Heatmap Align-
ment (PGHA) module plays a crucial role in aligning heatmaps to enhance the
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Table 4: Effect of different heatmap types.

Method
CASIA-B CCPG

NM BG CL Mean CL UP DN BG
R-1 (%) R-1 & mAP(%)

SkeletonGait 91.47 76.59 57.69 75.25 55.99 27.05 65.86 40.24 74.21 45.22 70.90 44.29
ours 98.22 92.14 74.15 88.17 73.59 41.06 83.19 58.04 86.47 60.27 90.53 66.36

Table 5: Effect of Pose-Guided Heatmap Alignment(PGHA). The arrows (−→) point
from the source domain to the target domain.

Setting CASIA-B−→CASIA-B CCPG−→CASIA-B CCPG−→CCPG CASIA-B−→CCPG
NM BG CL Mean NM BG CL Mean CL UP DN BG CL UP DN BG

w/o PGFA 98.36 93.04 77.43 89.61 54.46 46.82 31.69 44.32 70.63 82.50 84.26 89.16 3.09 7.54 12.00 14.59
w PGFA 98.22 92.14 74.15 88.17 54.18 46.30 32.98 44.49 73.59 83.19 86.47 90.53 5.63 9.79 18.30 21.59

generalization of the model across various datasets, while also ensuring com-
parable performance in the source domain. As demonstrated in Tab. 5, PGHA
is highly effective in mitigating discrepancies across different dataset domains,
addressing issues like variations in human body orientation and spatial displace-
ments. For example, employing PGHA leads to a promising performance im-
provement of 7% on CASIA-B−→CCPG in BG setting. This showcases PGHA’s
capacity to bridge the gap between distinct datasets, enhancing the generaliza-
tion abilities and effectiveness in cross-domain setting.

5 Conclusion and Limitations

Conclusion Our work introduces a new pipeline that bypasses the step of de-
coding heatmap into coordinates found in previous pose-based gait recognition
approaches, retaining the informative and human-centered representation from
pose estimation. Our method not only fully utilizes information from upstream
but also reduces dependency on complex post-normalization. We also propose
a simple baseline to demonstrate its effectiveness. Our model significantly out-
performs previous pose-based gait recognition methods in terms of performance,
robustness, and generalization across various datasets in most cases.

Limitations and Future Work While we have set up a simple baseline to
evaluate the effectiveness of heatmaps from our revised pipeline, GaitHeat still
encounters some limitations that can be further explored in future work. a) The
heatmap representation requires more computation and storage compared to
coordinates. b) The semantic information in the heatmap is only preliminarily
explored. c) The objectives of upstream tasks and GaitHeat are different, where
the former focuses on body structure and the latter on gait patterns. Effectively
combining these two tasks (e.g., training in an end-to-end manner) can encour-
age the former to also concentrate on gait features, rather than solely on body
structure.
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