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Abstract. Effectively navigating a dynamic 3D world requires a comprehen-
sive understanding of the 3D geometry and motion of surrounding objects and
layouts. However, existing methods for perception and planning in autonomous
driving primarily rely on a 2D spatial representation, based on a bird’s eye per-
spective of the scene, which is insufficient for modeling motion characteristics
and decision-making in real-world 3D settings with occlusion, partial observ-
ability, subtle motions, and varying terrains. Motivated by this key insight, we
present a novel framework for learning end-to-end autonomous driving based
on volumetric representations. Our proposed neural volumetric world modeling
approach, NeMo, can be trained in a self-supervised manner for image recon-
struction and occupancy prediction tasks, benefiting scalable training and deploy-
ment paradigms such as imitation learning. Specifically, we demonstrate how the
higher-fidelity modeling of 3D volumetric representations benefits vision-based
motion planning. We further propose a motion flow module to model complex dy-
namic scenes, enabling additional robust spatiotemporal consistency supervision.
Moreover, a temporal attention module is introduced to effectively integrate pre-
dicted future volumetric features for the planning task. Our proposed sensorimo-
tor agent achieves state-of-the-art driving performance on nuScenes and CARLA,
outperforming prior baseline methods by over 18%.
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1 Introduction

Navigation in the 3D world requires a comprehensive understanding of dynamic 3D sur-
roundings [4,29,33]. Detailed modeling of the shape and motion of 3D objects is partic-
ularly crucial when navigating in intricate, safety-critical settings such as autonomous
driving. For instance, careful reasoning over a myriad of surrounding 3D characteris-
tics, including frequent partial occlusions, uneven surfaces, off-ground objects and their
shapes, and subtle motion and maneuvers by vehicles signaling future intent, may all
mean the difference between seamless and safe navigation or a wrong maneuver with
potentially dire consequences.

Despite recent advancements in modeling for specific 3D tasks for autonomous driv-
ing, such as 3D segmentation and scene flow [11, 14, 19, 40, 54, 56, 60, 72, 80, 82],
how these tasks and models may be tightly integrated to facilitate the final driving
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task [8, 24, 43, 67] remains an open question. For instance, most sensorimotor (vision-
to-decision) models rely on simplified and inadequate representations of the 3D world,
i.e., in the Bird’s Eye View (BEV), to couple perception with action while integrat-
ing motion prediction and planning tasks [17, 23, 44, 46, 75, 85]. However, the planar
BEV lacks expressiveness, as it can only provide a coarse representation of the volu-
metric and dynamic 3D world. Additionally, current methods hinder scalability, as they
leverage extensive supervision (either as part of a modular pipeline or as an auxiliary
task, with known semantic segmentation targets in the BEV). In contrast, humans and
animals can adeptly navigate complex and dynamic 3D environments by leveraging
self-supervised spatial and predictive representations [29, 30, 34, 39, 45, 53, 70, 73].

Given the naive modeling of 3D geometry and temporal aspects by existing vi-
suomotor models, we aim to develop more generalized and scalable frameworks for
efficiently encapsulating 3D structures and their dynamics. We focus on a scalable,
self-supervised architecture and training process that does not rely on extensive and
cumbersome manual 3D annotations while jointly optimizing for the ultimate driv-
ing decision-making task. Our key insight lies in leveraging recent advancements in
3D world modeling, particularly based on neural rendering [31, 49, 52, 62], noting that
these are rarely explored as functional representations for making autonomous driv-
ing decisions. Moreover, the aforementioned frameworks generally study static scenes,
whereas we emphasize dynamic and dense 3D settings. Nonetheless, they may still pro-
vide a useful geometric prior, i.e., as an auxiliary and consistency-based self-supervised
reconstruction task.

Contributions: We introduce NeMo, a 3D volumetric based end-to-end sensorimotor
driving framework enabled by three key components: (1) Self-supervised volumetric
representation pre-training with image reconstruction and occupancy prediction tasks
through neural rendering. (2) A motion flow module for modeling dynamic scenes in
complex urban driving, leveraging spatiotemporal consistency for additional supervi-
sion. (3) A volumetric planner with a temporal attention module that effectively fuses
predicted future features for motion planning. In our experiments, we achieve state-
of-the-art performance in open-loop evaluation in the nuScenes benchmark, improving
over prior baseline methods by over 18% in performance.

2 Related Work

2.1 Learning-based Motion Planning

Learning-based end-to-end driving systems are garnering increasing attention in the re-
search due to their simplicity and impressive performance. Existing approaches can be
classified into two categories: imitation learning (IL) based methods and reinforcement
learning (RL) based methods. In IL [5, 6, 8, 25, 86, 87], an agent is trained by imitating
the behavior of an expert. RL, on the other hand, can train the agent using a reward
signal from trial and error [15, 16, 48, 64, 74, 79, 89]. To enhance the interpretability of
such end-to-end systems, recent approaches introduce intermediate learning tasks [7].
For instance, several methods learn features in a BEV space [17, 85], i.e., based on in-
troduced BEV perception tasks. UniAD [43] effectively unifies perception, prediction,
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and planning tasks through a query-based design, leading to impressive performance in
planning. VAD [46] encodes image features into BEV space, which are used to learn
the vectorized scene representation for motion planning. However, most methods lever-
age a simplified BEV space, which cannot capture intricate and complex characteris-
tics. Although BEV features have shown remarkable simplicity and effectiveness, in
our work we demonstrate that learning features in 3D volumetric space provides more
fine-grained information, leading to improved planning performance.

2.2 Self-supervised Visual Representation Learning

Self-supervised learning has demonstrated great potential in real-world applications due
to its ability to scale and adapt to new situations without human effort. Past works may
bolster visual feature learning through motion and actions, such as moving through the
scene or manipulating objects in view [2,66]. The changes in view induced by these ac-
tions are then used as supervisory signals for training. Moreover, recent works further
impose contrastive losses between manually augmented inputs [13, 20, 36]. However,
the feature representations of the aforementioned methods are learned by enforcing
constraints in the 2D image plane. In contrast, our proposed work extends the learned
feature representations to 3D space given image inputs, which naturally contain richer
information and can be used for downstream tasks that require extensive spatial rea-
soning, such as motion planning. Self-supervised 3D representations can be learned
through motion, visual cues, or spatial consistency cues, e.g., [32, 41, 51, 57, 68]. Khu-
rana et al. [49] learns geometric occupancy using LiDAR self-supervision. Gkioxari
et al. [32] reconstruct 3D scenes by exploiting consistency between different viewing
angles. However, their work considers simple indoor scenes, while our work addresses
complex outdoor scenarios. Lai et al. [52] predict 3D features alongside the prediction
of ego motions between frames. The features are transformed into future frames by ego-
motion to reconstruct future image frames. Consistency loss and reconstruction loss are
introduced to enforce the spatial coherence of the learned features. However, the work
assumes a static environment, as dynamic objects would violate spatial consistency af-
ter transformation. This makes the method unsuitable for complex dynamic scenarios,
such as driving on open roads. A recent study by ViDAR [83] analyzes learning 3D rep-
resentations via a latent rendering operator for future point cloud prediction. In contrast
to this concurrent work, NeMo introduces a motion flow module that better captures the
3D motion of objects in intricate dynamic scenarios. Moreover, we propose leveraging
additional supervision from RGB images through neural volumetric rendering. Our ex-
periments demonstrate the effectiveness of the proposed methods for 3D representation
learning and downstream planning task.

2.3 Pre-training for Autonomous Driving

In our work, we focus on learning effective feature representation through self-supervision.
Pre-training strategies have been widely used in computer vision. Features pre-trained
on a comprehensive dataset like ImageNet [26] exhibit effective transferability across
diverse settings and tasks. Moreover, studies have demonstrated the effectiveness of
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pre-training with weakly-labeled datasets [58, 71, 81]. Our recent line of methods in-
cludes leveraging self-supervised contrastive learning objectives [21, 37]. Inspired by
BERT [27], some works employ masked image reconstruction as a self-supervised
pre-training approach [35, 76]. However, pre-training in the context of end-to-end au-
tonomous driving remains under-discussed [50, 88]. PPGeo [78] pre-trains an effec-
tive visual encoder by predicting the ego-motion and minimizing the photometric error
based on visual observations. ViDAR [83] pre-trains the model through a visual point
cloud forecasting task for general autonomous driving. In contrast, our NeMo approach
learns a more effective volumetric representation through image reconstruction using
neural rendering and occupancy prediction. These newly introduced supervision sig-
nals, along with the novel motion flow module, are shown to benefit the ego motion
planning task.

3 Method

Towards robust and scalable planning in a dynamic 3D world, the proposed NeMo ap-
proach effectively learns a volumetric representation through self-supervision on read-
ily available driving data without extensive manual annotations. We further show such
learned volumetric representation to be beneficial for downstream planning task. In this
section, we first introduce an overview of NeMo in Sec. 3.1. Next, we introduce the
process of learning the volumetric scene representation in Sec 3.2. Finally, we detail
our approach to planning with the learned representation in Sec 3.3. An overview of
our complete framework is shown in Fig. 1.

3.1 Overview

The overall framework of NeMo is shown in Fig. 1. Our framework follows a two-stage
process. In the first stage, given multi-view RGB image inputs, NeMo first encodes
them into volumetric features using a transformer-based feature encoder network. This
encoder extracts and maps image features to their corresponding 3D space with camera
parameters. The extracted features are supervised via image reconstruction and occu-
pancy prediction across current and future frames using a neural volumetric render-
ing technique, which enables learning fine-grained feature representations and ensuring
spatial and temporal consistency. In the second stage, planning is performed by lever-
aging the learned volumetric representation.

3.2 Volumetric Representation Learning

Volumetric Feature Encoding: To generate expressive spatial features for encoding
3D geometric and semantic information, we employ a transformer-based module that
refines 3D spatial features by attending to specific regions in the RGB image input. Our
3D deformable attention network is derived from Zhu et al. [92]. Specifically, given
n view image input It ∈ Rn×H×W×3 at timestep t, we obtain volumetric features
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Fig. 1: Network Architecture and Training Process of NeMo. The temporal multi-view camera
images are encoded into spatial volumetric features through a transformer-based attention module
(colored in cyan blue). The motion flow module takes the temporal volumetric features, and
predicts feature motion flow and ego motion that transform current volumetric features into future
Tp steps (colored in green). Then, the neural volumetric rendering module renders RGB and
occupancy for each volumetric feature (colored in purple). For motion planning, the temporal
attention module fuses the predicted future volumetric features with the current ones (colored in
blue), which are used for motion planning (colored in red). Our training is done in two stages.
In the pre-training stage, the model is trained through self-supervision with RGB reconstruction
and occupancy prediction task. In the fine-tuning stage, an additional waypoint prediction task is
applied, i.e., learning a planner via behavioral cloning.

Vt ∈ RX×Y×Z×D through multiple deformable self-attention and cross-attention lay-
ers. In particular, the cross-attention mechanism projects the 2D image features to 3D
volumetric space and can be described as,

Vt = DeformAttn(F, T (z), It) (1)

where F ∈ RX×Y×Z×D is a learned volumetric feature query, z ∈ R3 is the coordinate
of a location in the volumetric space and T (z) projects z to a corresponding coordinate
in the input images using camera parameters. We use T (z) as reference points for the
deformable attention mechanism, which aligns 2D image features with 3D volumetric
features. We note that our attention module performs 2D-to-3D alignment, in contrast
to 2D-to-2D attention-based alignment methods [19, 55, 90]. The resulting 3D features
can be trained more effectively for the downstream auxiliary reconstruction tasks (i.e.,
RGB reconstruction and occupancy prediction, as shown in Fig. 1). Additional details
are included in the supplementary.

Neural Volumetric Rendering: As shown in Fig. 2, we adopt a neural volumetric
rendering approach for image reconstruction and occupancy prediction. To introduce
our approach, we begin by parameterizing camera rays and expressing the points along
the camera ray as

x = o + λd (2)
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Fig. 2: Neural Volumetric Rendering. We show the neural volumetric rendering operation at
timestep t for the ray x. First, an occupancy decoder takes the volumetric feature Vt as input and
predicts the occupancy pt. Subsequently, N points {x0, . . . ,xN} are sampled along the camera
ray x and are passed to the RGB decoder. The sampled features and predicted occupancy are
used jointly to render the feature for ray x (Eqn. 6). Finally, the rendered features are then used
to reconstruct the RGB image.

Where o ∈ R3 is the ray origin, λ represents the distance along the ray, and d ∈ R3

being the ray direction. For the sake of simplicity, we omit the index for each ray.
Further, the occupancy at coordinate z of the volumetric space can be defined as

pt[z] ∈ {0, 1} (3)

and we express the predicted probability of coordinate z being occupied as p̃t[z], which
is obtained using a multi-layer perceptron (MLP) based occlusion network focc

p̃t[z] = focc(Vt[z]) (4)

To perform neural volumetric rendering, we first randomly sample a total of N points
{x1, ..., xN} along each camera ray as in [62]. However, instead of performing volu-
metric rendering on RGB values, we render the feature of a given ray x instead, which
can be described as

Ṽt,x =

N∑
i=1

i−1∏
j=1

(1− p̃t[xj ])p̃t[xi]Vt[xi] (5)

Finally, the RGB value ct,x ∈ R3 of the pixel corresponding to ray x can be obtained
through a MLP based reconstruction network frecon

ct,x = frecon(Ṽt,x) (6)

Self-supervised Scene Learning: Our approach first trains a voxel-based deformable
transformer encoder through self-supervision from a sequence of raw sensor observa-
tions, as shown in Fig. 1. Specifically, the transformer-based spatial encoder takes as
input the current and Tp frames of past multi-view RGB images It = {It, . . . , It−Tp

}
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at timestep t and encodes them into volumetric features Vt = {Vt, . . . ,Vt−Tp
}.

To enforce spatial-temporal consistency over sequential observations, we leverage
a Motion Flow Module (Fig. 1) that estimates motions between the current frame
t to each of the Tf future frames. Specifically, we estimate SE(3) transformations
St = {St→t+1, . . . ,St+Tf−1→t+Tf

} between every subsequent future frames, as well
as volumetric flow fields Mt = {Mt→t+1, . . . ,Mt+Tf−1→t+Tf

}, and Mt→t+1 ∈
RX×Y×Z×3. Given a predicted motion, the representation of the current frame Vt can
be transformed to a future frame using the estimated motion flow and SE(3) transfor-
mations.

V̂t+1 = T (Vt,Mt→t+1,St→t+1) (7)

Where the transformation operation T first transforms the input volumetric feature us-
ing the predicted flow field and subsequently applying an SE(3) transformation. That
is given flow vector ∈ R3 from Mt→t+n, a 3 × 3 rotation matrix R and a translation
vector t from St→t+n, we transform the coordinate z to ẑ with

ẑ = R(z + f) + t (8)

By predicting the per-voxel flow, our approach is able to effectively handle dynamic
scenes, i.e., in contrast to approaches only predicting an SE(3) operation on the volu-
metric features [9, 31, 52].

Motion Flow Module: We propose a motion flow module to enable fine-grained rea-
soning over spatio-temporal consistency and dynamic objects. In contrast, prior feature
alignment based on rigid transforms [52] or ground-truth camera motion methods will
fail under dynamic settings. To better accommodate autonomous driving scenes, we
therefore propose to predict both St, the rigid SE(3) transformation of ego vehicle, and
the voxel-based feature motion flow Mt, which is the 3D motion of each cell of the
voxel grid. Specifically, the motion flow module takes as input the concatenated deep
voxel features of current and past timesteps, and passes them through several simple 3D
ConvNets H and G, such that Mt→t+n = H(Vt), and St→t+n = G(Vt). The predicted
SE(3) and flow are then used to warp the deep voxel features into future time steps.
In this manner, the motion of each cell can be disentangled while effectively handling
dynamic objects.

Loss: We compute an image reconstruction L1 loss between the rendered image and
the original images as well as VGG-16 perceptual loss [47] Lperc.

Lrecon =

N−1∑
n=0

∥It+n − Ît+n∥1+λpercLperc(It+n, Ît+n) (9)

In order to ensure the learned volumetric feature captures the 3D structure of the scene,
we generate the pseudo occupancy label {pt, . . . ,pt+Tf

} by voxelizing the LiDAR
point cloud [22, 57, 91]. We apply an occupancy prediction loss Locc between pre-
dicted occupancy and the pseudo occupancy map, consisting of a scene-class affinity
loss Lscal [12] and a binary cross entropy (BCE) loss,

LBCE = −
Tf−1∑
n=1

K∑
n=1

[pk
t+n log(p̂

k
t+n) + (1− pk

t+n) log(1− p̂k
t+n)] (10)
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Locc = λscalLscal + λBCELBCE (11)

3.3 Planning with Volumetric Representation

Problem Setting: We consider the task of learning an end-to-end driving agent
fθ:X → Y that generates a navigational decision in the form of a desired future trajec-
tory relative to the ego-vehicle, i.e., a set of K waypoints y ∈ Y [18, 63], from obser-
vations x = (It−1, It, v, c) ∈ X of a sequence of camera images from six perspectives
It = {Iit}6i=1 ∈ R6×W×H×3 at current timestamp t, It−1 = {Iit−1}6i=1 ∈ R6×W×H×3

at the prior timestamp t − 1, ego-vehicle speed v ∈ R, and a categorical navigational
command c ∈ N (e.g., turn left, turn right, and forward [24]). In our work, we aim at
learning the driving agent fθ through behavior cloning. Given a set of collected data
of observations and expert trajectories, D = {(xj ,yj)}Nj=1, the agent can be optimized
using

minimize
θ

E(x,y)∼D [L(y, fθ(x))] (12)

where L is a suitable loss function, e.g., L2 loss for waypoint prediction.

Temporal Attention Volumetric Planner: Traditional end-to-end driving methods
tackle the problem in BEV space by converting the front view perception into BEV
features, which are used for downstream planning task [17, 43, 85]. However, NeMo
leverages a volumetric feature representation Vt for planning, which provides more
fine-grained 3D information of the surrounding environment.

As discussed in Sec. 3.2, in self-supervised scene learning, temporal information
is used to train the volumetric features. We propose to incorporate the temporal infor-
mation through a proposed future attention module for planning. To be specific, the
multi-view RGB images of current timestep It and previous timestep It−1 are encoded
into volumetric features Vt and Vt−1, which are concatenated and used to estimate the
motion flow Mt→t+1 and SE(3) transformations St→t+1. Then, the volumetric features
V̂t+1 at timestep t+ 1 can be calculated based on Eqn. 7. These future volumetric fea-
tures are supposed to reason about the dynamic changes of both the ego vehicle and
surrounding objects. Then we fuse this future information with the current volumetric
features through an attention module. The self-attention is used to compute the attention
matrix A ∈ RX×Y×Z×D

A = softmax(
QKT

√
d

)V (13)

where Q, K and V matrices are derived from the estimated future volumetric fea-
tures V̂t+1. The attention matrix is then used to compute the feature embedding
VF ∈ RX×Y×Z×D for waypoints prediction by multiplying with the current volu-
metric features Vt. The future attention module ensures temporal feature integration
and leads to enhanced focus on the future motion of dynamic objects, which is crucial
for motion planning. Our experiments in Sec. 4 demonstrate that attention-based future
feature fusion is more effective than simple concatenation or the absence of temporal
information.
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We adopt a transformer-based planning module for waypoint prediction. The mod-
ule is built with a standard transformer decoder stacked for three layers [43]. To align
with the 2D planning problem, we reduce our feature embedding VF along the Z di-
mension by first reshaping the feature with shape X × Y × Z × D into the shape
X × Y × (Z ∗ D) through merging the height and feature channel dimension. It is
further reduced through multiple MLP layers into shape X × Y × C, where C = 256.
To enable the planner to reason over high-level navigational commands and ego vehicle
status, we fuse navigational command embedding and ego speed embedding, along with
a learned planning embedding as query, and cross-attend with the feature embedding.
We then use MLP layers to regress our final waypoint prediction.

Loss: To fine-tune the model from the first self-supervised scene learning stage in
Sec. 3.2, our loss contains three parts. For the waypoints prediction, a L2 loss is calcu-
lated between the predicted waypoints ŷ and the expert demonstration y:

Lwpts = ∥ŷ − y∥2 (14)

To ensure the accurate estimation of the motion flow and SE(3) transformation, thus
enabling precise estimation of future volumetric features, we retain the image recon-
struction loss and occupancy loss for the current and future frames from Eqn. 9 and
Eqn. 11. Therefore, the overall loss for the ego motion planning fine-tuning is defined
as

Lplan = λwptsLwpts + λreconLrecon + λoccLocc (15)

where λwpts, λrecon and λocc are the weights that balances the tasks.

4 Experiments

We conduct experiments on challenging nuScenes dataset [10], consisting of 1000 driv-
ing scenes. We follow standard open-loop evaluation [43, 46, 59, 85] and use L2 dis-
placement error and the collision rate in 1, 2, and 3 seconds to evaluate the model
performance. Additionally, we conduct closed-loop evaluation using the CARLA sim-
ulator [28] by adopting the Town05 benchmark following previous studies [23,46]. We
follow the standard CARLA metrics and report Driving Score (DS) and Route Comple-
tion (RC), where DS is computed based on RC and infraction rates [1]. In this section,
we investigate the following aspects of our design:

1. Is the volumetric representation more effective than BEV representation or simple
convolutional neural network (CNN) for motion planning?

2. How do the different modules in pre-training impact the final performance?
3. How do we effectively incorporate temporal information in fine-tuning stage for

motion planning task?

4.1 Implementation Details

NeMo adopts ResNet-50 [38] as its default image backbone to encode image features
before volumetric feature encoding. We set the range of our volumetric representation



10 Z. Huang, J. Zhang et al.

to be 50m× 50m× 8m and each voxel to be the size of 0.5m. Our setting results in a
volumetric feature the size of 200 × 200 × 16. In the first stage of our model training,
we use 4 NVIDIA A6000 GPUs with a batch size of one to train all our models. We
adopt AdamW with weight decay 1e−2 and a learning rate of 2e−4 and train for a
total of 10 epochs. We set the coefficients of the loss function to be λscal = 10, and
λBCE = 1. For the second stage of training, we train our models on four NVIDIA
A6000 GPUs, and use AdamW to train our model for 10 epochs with similar settings
as the first stage. The hyperparameters to balance various tasks in the fine-tuning stage
are set to be λwpts = 1, λrecon = 0.5 and λocc = 0.5.

4.2 Results

Model Architecture: We first analyze the proposed volumetric planning model archi-
tecture on the nuScenes official validation set. As shown in Table 1, we append the
same waypoint prediction head [43] to different perception backbones, and train the
models on the nuScenes training set. Previous state-of-the-art baselines use off-the-
shelf BEV encoder BEVFormer [55] as their perception backbone, which achieves an
average L2 error of 1.03 without any self-supervised pre-training procedure. Our pro-
posed NeMo (Scratch) planner outperforms the BEV planner and achieves an average
L2 error of 1.02 and an average collision rate of 0.59. Pre-training BEVFormer using
the occupancy-based supervision and subsequent fine-tuning for the planning task only
results in minor performance gains. In contrast, the rich features learned by NeMo are
shown to leverage the pre-training process more effectively and result in larger driving
performance gains, e.g., L2 error decreases by 17.6%. The collision rate also shows
a noticeable reduction, achieving the lowest rate, of 0.30%, among the various model
structures and training settings. We can therefore see the benefits of the volumetric
feature representation for motion planning task, even before the self-supervised pre-
training, motion flow, or temporal attention mechanism have been applied. We now
continue to analyze the advantages of volumetric representation pre-training and tem-
poral attention volumetric planner to improve motion planning performance.

Comparison with State-of-the-art Methods: As shown in Table 1, with self-
supervised volumetric feature pre-training, temporal attention mechanism for motion
planning, and the proposed designed fine-tuning loss, our proposed NeMo method
obtains an average L2 error of 0.84 and an average collision rate of 0.3%, achieving
state-of-the-art performance among prior baseline methods. We note that the volumet-
ric feature pre-training procedure reduces the average L2 error from 1.02 in Table 1
to 1.00 and average collision rate from 0.59 to 0.54, indicating the effectiveness the
self-supervised volumetric feature pre-training mechanism. Next, we will present the
detailed ablation of each proposed module.

Closed-Loop Evaluation in CARLA: As shown in Table 2, our NeMo model trained
from scratch already outperforms the prior state-of-the-art method in terms of the most
important metric, DS (by over 9.5% and 12.9% in Town05 Short and Long benchmark,
respectively). This finding highlights the advantages of volumetric feature representa-
tion in motion planning tasks. Adding the proposed self-supervised pre-training step
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Table 1: Comparative Analysis for Open-Loop Evaluation on nuScenes. Comparison of
NeMo with prior baseline methods in terms of L2 error and collision rate (Collision). VAD [46]
computes the error by averaging both over samples and time intervals1, which is different from
other baselines. For a fair comparison, we report VAD results from PARA-Drive [77] (VAD*).
NeMo outperforms all prior baseline methods both in terms of L2 error and Collision rate.

Method
L2 (m) ↓ Collision (%) ↓

1s 2s 3s Avg. 1s 2s 3s Avg.

NMP [84] - - 2.31 - - - 1.92 -

SA-NMP [84] - - 2.05 - - - 1.59 -

FF [41] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43

EO [49] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33

ST-P3 [42] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71

UniAD [43] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

BEVFormer [55] w/o Pre-train 0.37 0.95 1.76 1.03 0.13 0.23 1.44 0.60

BEVFormer [55] w/ Pre-train 0.35 0.95 1.76 1.02 0.08 0.27 1.15 0.50

VAD* [77] 0.50 1.02 1.68 1.07 0.02 0.28 0.85 0.38

Our Base Model 0.34 0.92 1.73 1.00 0.07 0.31 1.24 0.54

Base w/ Temporal Concat. 0.45 0.88 1.49 0.94 0.00 0.19 0.94 0.38

Base w/ Temporal Attn. 0.36 0.92 1.44 0.91 0.00 0.19 0.87 0.35

NeMo (Scratch) 0.35 0.94 1.77 1.02 0.11 0.30 1.37 0.59

NeMo 0.39 0.74 1.39 0.84 0.00 0.09 0.82 0.30

further results in improvements to the DS, by 7.7% and 24.4%, and RC, by 8.6% and
13.5%, for the short and long route evaluation, respectively. We note that in contrast
to baseline models, e.g., VAD [43, 46], our model does not leverage any privileged
segmentation supervision, such as BEV segmentation annotations.

4.3 Ablation Studies

Effect of Temporal Module in Motion Planner: Table 1 depicts incorporating tem-
poral information through proper attention module and designed training loss in the
fine-tuning stage improves the motion planning performance. Specifically, fusing the
predicted future volumetric features with the current volumetric features through the
proposed temporal attention module significantly reduces the average L2 error by 9%
(i.e., from 1.00 to 0.91) and the average collision rate by 35% (i.e., from 0.54 to 0.35).
It is worth noting that incorporating temporal information benefits long-term planning,
leading to better performance in 3 seconds, i.e., 1.73 vs. 1.44 in L2 error and 1.24 vs.
0.87 in collision rate. Combining temporal information by simply concatenating the

1 The issue has been publicly discussed on Github: https://github.com/hustvl/VAD/issues/33

https://github.com/hustvl/VAD/issues/33
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Table 2: Comparative Analysis for Closed-loop Evaluation on CARLA. Using camera input
only in test-time, NeMo achieves state-of-the-art results in closed-loop simulation on the Town05
CARLA benchmark [23,28,46]. We note that NeMo does not leverage BEV segmentation super-
vision, often assumed by prior methods [23, 46].

Method
Town05 Short Town05 Long
DS ↑ RC ↑ DS ↑ RC ↑

CILRS [25] 7.47 13.40 3.68 7.19
LBC [18] 30.97 55.01 7.05 32.09
TransFuser [23] 54.52 78.41 33.15 56.36
ST-P3 [42] 55.14 86.74 11.45 83.15
VAD-Base [46] 64.29 87.26 30.31 75.20

NeMo (Scratch) 70.42 83.01 34.23 71.32
NeMo 75.87 90.12 42.57 80.98

Table 3: Component Ablations for the Proposed Self-supervised Pre-training Step. We show
each component to holistically contribute to the overall performance of the final model, with
occupancy-based supervision being the most impactful. IR refers to Image Reconstruction task.
OP refers to Occupancy Prediction task. Flow refers to our proposed motion flow module.

Setup ID.
Settings L2 (m) ↓ Collision (%) ↓

IR OP Flow 1s 2s 3s Avg. 1s 2s 3s Avg.

0 ✓ ✓ 0.37 0.95 1.75 1.02 0.11 0.37 1.25 0.58

1 ✓ ✓ 0.36 0.96 1.80 1.04 0.10 0.41 1.32 0.61

2 ✓ ✓ 0.34 0.91 1.70 0.98 0.09 0.35 1.26 0.57

3 ✓ ✓ ✓ 0.34 0.92 1.73 1.00 0.07 0.31 1.24 0.54

predicted future volumetric features instead of the proposed attention module down-
grades planning performance, e.g., 0.94 vs. 0.91 in L2 error and 0.38 vs. 0.35 in col-
lision rate. Moreover, we observe that fine-tuning the motion planner with auxiliary
image reconstruction loss and occupancy loss boosts the performance by 7.7% in av-
erage L2 error and 14.3% in average collision rate. The auxiliary losses guarantee the
precise estimation of future volumetric features, contributing to an effective fusion of
temporal information.

Effect of Each Module in Self-supervised Pre-training: Table 3 studies the effective-
ness of each component proposed in the self-supervised volumetric feature learning.
In this study, we fine-tune different pre-trained models with a simple waypoint predic-
tion head [43] appended to the volumetric feature output without temporal information
and auxiliary losses. First, we note that the occupancy prediction task substantially con-
tributes to performance gain, e.g., 0.61 vs. 0.54 in the average collision rate (experiment
setup ID 1-3 in Table 3). Additionally, the motion flow module enables fine-grained rea-
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Fig. 3: Qualitative Results on nuScenes. We provide RGB images from six perspectives, volu-
metric features processed by PCA, occupancy prediction, and ground truth BEV with the plan-
ning results. The ground truth waypoints are shown in green and the predicted waypoints are
shown in red. Despite the lack of explicit supervision, our method recovers geometry and layout
information in the latent space in a self-supervised manner. For instance, in the first row, the ve-
hicle is performing a lane change to the right and the underlying volumetric features highlight
road structure which is relevant for the task. We also observe ray artifacts due to the ill-posed
rendering-based supervision process. This limitation could be further addressed by future work,
e.g., through more sophisticated sampling strategies and auxiliary constraints based on spatial
and temporal regularization.

soning over spatio-temporal consistency, leading to 6.9% reduction in average collision
rate (ID 0-3). Finally, although the image reconstruction task slightly increases the L2

error by 2%, the collision rate reduces by 16.9% (ID 2-3). When leveraging all three,
NeMo achieves the best motion planning performance with the lowest average L2 error
and collision rate (ID 3).
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4.4 Qualitative Results

In Fig. 3, we visualize the learned volumetric features and planning results of NeMo.
We provide the raw RGB images from six perspectives and the corresponding ground
truth BEV for a better understanding of the scene. To visualize 4D volumetric features
Vt ∈ RX×Y×Z×D, following previous work [3, 65] we first apply Principal Com-
ponent Analysis (PCA) to reduce D dimensions to three dimensions, representing the
RGB channels. Then we compute the mean along Z dimension, resulting in a feature
of size X × Y × 3. We visualize this feature as a regular RGB image. The visualiza-
tion shows that NeMo can learn meaningful volumetric features that focus on critical
driving-related information i.e., road and objects. For example, in the first row, the ego
vehicle is performing lane changing to the right and the visualized PCA processed vol-
umetric feature accurately portrays the road shape which is essential for the planning
task. Moreover, the proposed NeMo motion planner is able to leverage the volumetric
features and reasonably predict accurate future waypoints. We also observe ray artifacts
in PCA processed features due to depth ambiguity in the rendering based supervision
process, which could have potential adverse impact on method performance. This limi-
tation could be further addressed by future work through leveraging more intricate and
elaborate spatial-temporal constraints in model training. Additional qualitative exam-
ples can be found in the supplementary.

5 Conclusion

In this paper, we present NeMo, a volumetric planner through a novel and effective
self-supervised feature pre-training. We propose a neural volumetric rendering tech-
nique that enables image reconstruction and occupancy prediction as self-supervision.
We further design a motion flow module that models the dynamic movement of objects
in the scene and enables effective usage of temporal information as additional supervi-
sion signals. In the fine-tuning stage, we develop a temporal attention module to fuse
the predicted future volumetric features for motion planning. NeMo obtains state-of-
the-art results in both closed-loop CARLA evaluation and open-loop evaluation in the
nuScenes benchmark, indicating the effectiveness of the proposed framework. Large-
scale evaluations in the future can further uncover the benefits of the pre-training stage
across driving domains and tasks.

Limitations: While our proposed approach enables more expressive 3D models for
visuomotor policies, it introduces certain trade-offs. Given the nature of voxel-based
representations, there exists an inherent trade-off between memory and computation
efficiency. As memory exhibits a cubit growth as voxel dimensions increase. This is
a currently widespread issue with 3D scene modeling and volumetric representations.
Nonetheless, recent advances in implementing more efficient volumetric representa-
tions (e.g., [61, 69]) may be applicable within our planning-oriented framework. and
could be studied in the future.

Acknowledgments: We thank the Red Hat Collaboratory (award #2024-01-RH02) for
supporting this research.
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